Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра - [20]

Шрифт
Интервал

/сила тока равно уже известной величине — сопротивлению, словно сопротивление было вполне определенной характеристикой, данной (и названной) неким божеством задолго до Ома и ожидавшей, пока докажут, что она равна отношению напряжение/сила тока. Правильнее сказать, что отношение напряжение/сила тока = постоянной, называемой сопротивлением.

Ом установил, что при увеличении длины проволоки вдвое сопротивление удваивается: сопротивление прямо пропорционально длине проводника. При увеличении диаметра проволоки вдвое сопротивление уменьшается в четыре раза: сопротивление обратно пропорционально площади поперечного сечения проводника. Объединяя оба утверждения, мы записываем:



Постоянная ρ называется удельным сопротивлением. Она представляет собой характеристику материала проволоки и не зависит от формы и размера образца (хотя она может изменяться с температурой). Обратная величина, 1/ρ, называется электропроводностью; она обладает замечательным сходством с теплопроводностью. Чтобы сравнить обе величины, запишем



Следовательно,



Но сила тока — это скорость потока электричества, т. е. электрический заряд/время. Поэтому перепишем это равенство:



Тепло, проходящее по стержню благодаря теплопроводности, записывается следующим образом:



Таким образом, электропроводность (1/ρ) и теплопроводность (k) аналогичны. Действительно, значения обеих величин обнаруживают удивительное сходство. Металлы, будучи хорошими проводниками электрического тока, являются также хорошими проводниками тепла, а те из них, которые лучше всего проводят электрический ток, такие, как медь, серебро, алюминий, лучше всего проводят тепло. Соответствие настолько поразительно, что мы полагаем, что носители электрического тока ответственны и за перенос тепла.


Закон Ома не универсален

Существует много материалов и приборов, которые не подчиняются закону Ома. Радиолампы, транзисторы, кристаллы минералов при плохом контакте обнаруживают несимметричные графики зависимости между напряжением и током. Графики эти искривлены, часто имеют ярко выраженные «изломы». Мы отнюдь не считаем эти исключения досадными: приборы с такими вольтамперными характеристиками используются в качестве выпрямителей (для зарядки аккумуляторов и детектирования радиосигналов) и находят другие важные применения в современной электронике. В системах электроснабжения для защиты от молний применяют прибор, изготовленный из карбида кремния, который обладает очень большим сопротивлением при обычных напряжениях, но когда молния ударяет в линию электропередачи и создает очень высокое напряжение, он разрушается, причем сопротивление его становится малым. Для всех этих «нелинейных» материалов и приборов мы по-прежнему можем вычислить сопротивление, но оно не имеет постоянного значения.


Последовательное и параллельное соединения

Опыты показывают, что если несколько проводников сопротивлением R>1, R>2… и т. д. соединить последовательно, то общее сопротивление такой группы проводников R равно R>1 + R>2 +… т. е. сумме отдельных сопротивлений. Если несколько таких проводников соединить параллельно (присоединяя все проводники концами к одним и тем же двум точкам), то общее сопротивление R дается соотношением 1/R = 1/R>1 + 1/R>2 + и… т. д. Проводимость такой группы проводников 1/R равняется сумме проводимостей отдельных проводников. Эти правила могут быть выведены из предположений о сохранении энергии и правил для сложения токов.



Фиг. 47.


Температурная зависимость сопротивления

Металлы меняют свое сопротивление с изменением температуры. Сопротивление таких химических элементов, как медь и вольфрам, увеличивается с ростом температуры[38]. Грубо говоря, сопротивление большинства чистых металлов в широких пределах изменяется прямо пропорционально абсолютной температуре.

Сопротивление углерода уменьшается с повышением температуры. У сплавов удельное сопротивление обычно больше, чем у металлов, которые входят в их состав; сплавы с высоким удельным сопротивлением применяют для высокоомных катушек в реостатах и т. д. У некоторых сплавов сопротивление почти не меняется с изменением температуры (например, у константана, сплава 60 % меди и 40 % никеля, который вы, возможно, применяли в вашем первом лабораторном опыте по изучению закона Ома с целью облегчить его выполнение). Эти сплавы используют для изготовления эталонов сопротивления.


Задачи

Если известно сопротивление линии электропередачи, катушки генератора, или обмоток электромотора, то мы можем вычислить потери мощности, рассчитать силу тока, соответствующую заданному напряжению, и вообще выяснить, что должно произойти в цепи, не прибегая к сложным опытам. Инженеры-специалисты по проводной связи и передаче электроэнергии тщательно измеряют и записывают сопротивления своих линий. Поэтому они могут отыскивать неисправности путем простых измерений сопротивления с обоих концов линии. Предлагая вам арифметические задачи на закон Ома, мы стремились к тому, чтобы вы лучше поняли основы электротехники, а не просто теряли время на упражнения в арифметике, подставляя числа в готовые формулы. Внимательно анализируйте


Еще от автора Эрик Роджерс
Физика для любознательных. Том 1. Материя. Движение. Сила

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Покоренный электрон

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания

Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Климатическая наука: наблюдения и модели

Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.