Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра - [146]

Шрифт
Интервал

(фиг. 124). Массивное атомное ядро служит γ-лучу как бы наковальней, на которой он выковывает пару — процесс идет при условии выполнения закона сохранения энергии и импульса. В камере Вильсона рождение пар происходит вблизи ядер атомов газа или ядер металлической пластинки, помещенной в камеру для того, чтобы сделать этот процесс более вероятным.

Когда было найдено, что многие искусственно созданные радиоактивные атомы излучают позитроны е>+ (или β>+), последние стали привычным явлением. Обычный атом, в ядро которого на циклотроне влетел лишний протон, часто оказывается нестабильным. Для своих размеров новое ядро чувствует себя пересыщенным протонами (или, что то же самое, обедненным нейтронами). Поэтому с большой вероятностью могут произойти следующие превращения:

[A] один из протонов —> нейтрон и электрон, причем электрон должен унести с собой положительный заряд, т. е. это должен быть β>+ в силу универсального закона сохранения заряда[161]. Ядро другого радиоактивного атома может оказаться переобогащенным нейтронами, и тогда в нестабильном ядре:

[B] нейтрон —> протон + электрон, причем электрон уносит с собой отрицательный заряд, т. е. излучается β>-[162].

Следовательно, утверждать, что нейтрон «состоит» из тесно связанных протона и электрона, по-видимому, нельзя. Правильнее говорить в более общем смысле (см. фиг. 135).

Упомянутые выше превращения [А] и [В] — это лишь тени более сложных событий, которые разыгрываются среди частиц и зарядов. Превращение типа [В] происходит спонтанно для свободных нейтронов: нейтроны радиоактивно распадаются на протон, электрон (>1H>+ и е>-), и нейтрино с периодом полураспада, примерно равным 12 минутам. Превращение [А] не может происходить без затраты дополнительной энергии. В таком превращении, теперь это достоверно известно, также участвует нейтрино. Во всех превращениях выполняются два правила:

1. Сохраняется заряд: если возникают новые заряды, то при этом число положительных и отрицательных зарядов одинаково.

2. Сохраняется число частиц при условии, что частицы и им соответствующие античастицы (например, е>- и е>+) считаются «одинаковыми, но противоположного знака» и вычеркиваются при подсчете[163].

Общий вывод таков: «старое представление о том, что частица представляет собой связку других частиц, следует оставить и использовать для ядерных превращений установленные новые правила». На молекулы в химии распространяется старая идея кулинарного рецепта для приготовления торта: например, можно говорить, что молекула воды состоит из двух атомов Н и одного О.



Однако если распространить его дальше на субатомный уровень и говорить, что «нейтрон состоит из протона и электрона», то при этом можно ввести себя в заблуждение. Здесь кулинарная аналогия заведет нас слишком далеко. К подобным утверждениям следует относиться с осторожностью, как относятся к утверждению ребенка, вытащившего червяка из яблока и сказавшего: «Из яблока получился червяк!»

Приведем еще некоторые экспериментальные данные относительно структуры нейтрона:

1) Масса нейтрона на 0,001 а.е.м. больше массы протона. Если учесть связанный с массой дополнительный запас энергии 1 Мэв, выделение энергии в превращении нейтрон —> протон не является неожиданным. Однако такое превращение нельзя представить как простое раскалывание на куски нестабильного образования, потому что

2) хотя свободный нейтрон и нестабилен, в атомных ядрах он живет бесконечно долго,

3) хотя у нейтрона нет заряда, вокруг него существует магнитное поле, что, по-видимому, указывает на движение внутри него каких-то зарядов,

4) результаты обстрела нейтронов (в связанном состоянии в атомных ядрах) электронами как будто свидетельствуют о том, что магнитное поле существует и внутри нейтрона, однако в нем нет и намека на какие-либо заряды.

Существует предположение, что нейтрон обладает внутренней структурой, возможно, представляет собой протон с вращающимся вокруг него отрицательным мезоном. Однако такое предположение выглядит рискованным, поскольку, если его понимать буквально, оно находится в противоречии с некоторыми экспериментальными фактами.


Аннигиляция вещества

Может также происходить событие, противоположное рождению пар. Позитрон встречается с обычным отрицательным электроном, и они исчезают, рождая γ-лучи:

е>+ + е>- —> γ +γ.

Для того чтобы выполнялся закон сохранения энергии и импульса, в результате реакции должно возникать два γ-луча, движущихся в противоположных направлениях. Они и наблюдаются, если радиоактивный образец, излучающий β>+, поместить между двумя цилиндрическими счетчиками. Счетчики тогда регистрируют одновременно пару γ-лучей как раз той энергии, которую следовало бы ожидать, — 0,5 Мэв каждый. Их энергию можно измерить по числу ионов, которые создаются в ионизационной камере γ-лучами при выбивании электронов.



Фиг. 136. а — аннигиляция; б — образование пар.


>Задача 4. Аннигиляция электронов

>Покажите, что, если при превращении пары электронов в пару γ-лучей не происходит потери массы, каждый γ-луч обладает энергией, равной 0,5 Мэв.


Лирическое отступление

Таким образом, соотношение


Еще от автора Эрик Роджерс
Физика для любознательных. Том 1. Материя. Движение. Сила

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.


Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Неизбежность странного мира

Научно-художественная книга о физике и физиках. Эта книга — нечто вроде заметок путешественника, побывавшего в удивительной стране элементарных частиц материи, где перед ним приоткрылся странный мир неожиданных идей и представлений физики нашего века. В своих путевых заметках автор рассказал о том, что увидел. Рассказал для тех, кому еще не случалось приходить тем же маршрутом. Содержит иллюстрации.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.