Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра - [126]

Шрифт
Интервал

Хотя мы не будем изучать радиотехнику детально, вы уже должны быть готовы к пониманию принципов действия основных частей радиоприемника. Однако сделаем следующие необходимые пояснения.

Частоты звуков речи и музыки заключены в интервале от нескольких десятков до нескольких тысяч колебаний в секунду. Существуют два возражения против использования радиоволн в таком диапазоне частот: 1) для достаточно мощной радиостанции, работающей на столь низких частотах, необходима грандиозная система антенн; 2) владельцы радиоприемников будут слышать одновременно все соседние станции, т. е. сплошную какофонию звуков.

Если большую мощность трудно излучать на частоте радиоволны 1000 колебаний в 1 сек, то это легко делать на частоте 1 000 000 колебаний в 1 сек. Поэтому радиостанции излучают радиоволны высоких частот (радиочастоты), амплитуда которых, однако, меняется в соответствии с колебаниями звуков речи или музыки (звуковые частоты).

Основная волна («несущая»), когда она не несет какую-либо мелодию, выглядит так, как показано на фиг. 91.



Фиг. 91.Временная развертка радиоволны.

>Частота волны 1 000 000 колебаний в 1 сек, амплитуда постоянна. 


Картина звуковой волны, которую необходимо передать с помощью радиоволны, выглядит подобно изображенной на фиг. 92.



Фиг. 92.Временная развертка звуковой волна с частотой в несколько сотен колебаний в 1 сек.

>Слева — одна музыкальная нота: синусоида, повторяющаяся с частотой, скажем, 400 раз в 1 сек; справа — гласный звук или нота, взятая на музыкальном инструменте. Форма волны сложнее, повторения происходят с частотой, скажем, 400 раз в 1 сек.


Амплитуду основной радиоволны заставляют следовать форме звуковой волны: она «промодулирована», как на фиг. 93.




Фиг. 93.Радиоволна, «модулированная» звуковыми колебаниями.

>Частота радиоволны равна миллиону или больше колебаний в 1 сек, следовательно, в одном периоде акустической волны укладываются тысячи радиочастотных колебаний. На приведенных рисунках истинные соотношения не выдержаны.


Радиоволны такого вида излучаются радиовещательной станцией. Когда такая волна достигает антенны радиоприемника, она наводит в ней колеблющееся с частотой волны напряжение. При этом между антенной и землей возникает слабый ток той же самой частоты. Если приемная система устроена так, что ее собственные колебания точно такой же частоты, то имеет место «резонанс»[146], и поступающая радиоволна вызывает колебания большой амплитуды. Владелец радиоприемника настраивает свою систему антенна — земля на частоту волны той радиостанции, которую он хочет слушать. Он делает это вращением ручки конденсатора колебательного контура, который в его приемнике включен в цепь, связывающую антенну с заземлением.

Принятые антенной модулированные радиочастотные колебания подаются на сетку триода и преобразуются в усиленные колебания тока в анодной цепи, причем увеличение мощности этих колебаний происходит за счет анодной батареи. Можно представить себе, как в приемнике друг за другом следуют новые стадии усиления, после окончания которых ток направляется в громкоговоритель. Но это будет полнейшим заблуждением. Массивная катушка или диффузор громкоговорителя не способны следовать быстрым радиочастотным колебаниям. Даже если бы они и могли, то получился бы не звук, а всего лишь высокочастотный шум, меняющийся в такт звуковым колебаниям. Поэтому необходимо перевести радиочастотные колебания в нечто, что передавало бы картину звуковых колебаний. Это производится путем выпрямления радиочастотных колебаний (в радиотехнике это называется «детектированием»). На фиг. 94 (это перерисованная фиг. 93) изображена картина колебаний тока на входе радиоприемника и соответствующая ей картина колебаний напряжения на сетке радиолампы.



При выпрямлении тока или напряжения с помощью устройства, аналогичного диоду, действующему подобно одностороннему клапану, остается лишь только верхняя половина изображенной картины колебаний, а нижняя отсекается.



Если бы ток, передающий исходную картину колебаний, попадал в громкоговоритель, то он действовал бы на диффузор следующим образом, не приводя к сколько-нибудь заметному отклику с его стороны:



Выпрямленный ток будет раскачивать колебания диффузора следующим образом:



Массивный диффузор суммировал бы эти толчки, происходящие с частотой миллион колебаний в секунду, и отвечал бы на их общее среднее подобно следующему:



Такое сглаженное среднее выпрямленных радиочастотных колебаний заставляет диффузор громкоговорителя следовать несколько ослабленным звуковым колебаниям. Поэтому из громкоговорителя выходят звуковые волны, являющиеся хорошей копией первоначальных звуковых волн, служивших для модуляции радиочастотных волн.



Такие медленные колебания звуковой частоты могут быть далее усилены другим триодом, действующим как «усилитель звуковой частоты».

Конечное напряжение звуковой частоты создается лампой, обязательно обладающей высоким сопротивлением, но сами громкоговорители[147] имеют низкое сопротивление. Вместо «сопротивление» скорее следовало бы говорить «импеданс», имея в виду более общий характер сопротивления цепи «меняющемуся току»


Еще от автора Эрик Роджерс
Физика для любознательных. Том 1. Материя. Движение. Сила

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.


Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Неизбежность странного мира

Научно-художественная книга о физике и физиках. Эта книга — нечто вроде заметок путешественника, побывавшего в удивительной стране элементарных частиц материи, где перед ним приоткрылся странный мир неожиданных идей и представлений физики нашего века. В своих путевых заметках автор рассказал о том, что увидел. Рассказал для тех, кому еще не случалось приходить тем же маршрутом. Содержит иллюстрации.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.