Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра - [115]

Шрифт
Интервал

Частицы положительных лучей представлялись остатками атомов после потери ими одного или нескольких электронов. Их е/М имеет то же значение, что и для соответствующих ионов при электролизе. И на самом деле положительные лучи есть быстро движущиеся ионы. Они могут быть группами атомов или единичными атомами и могут иметь несколько «+» зарядов (например, Н>+>+, О>++, Н>2О>+, СH>3>+).

Первоначальная картина атомной структуры содержала две эти составляющие. Для сохранения стабильности системы электроны представлялись втиснутыми в большой положительно заряженный шар и выглядели наподобие изюминок в пудинге. Это была модель, предложенная Дж. Дж. Томсоном и общепринятая в начале нашего века: массивный положительный «пудинг» 10>-10 или более в диаметре с довольно маленькими, легкими отрицательными электронами, вставленными в него в количестве, как раз достаточном, чтобы сделать «пудинг» нейтральным. Подобная картина объясняла эффекты, наблюдавшиеся в разрядной трубке, и позволяла легко понять, почему очень быстрые частицы, подобные альфа- и бета-лучам, могли проходить прямо через вещество. Они проходили прямо через «пудинг», никогда не сталкиваясь с объектами достаточно большой массы, имеющими достаточно большой заряд для того, чтобы вызвать сильные отклонения.

Так же как археолог производит реконструкцию из осколков, Томсон и другие создали атомную модель из кусков разбитых вдребезги атомов, найденных в электрической разрядной трубке. Однако такое простое воссоединение составляющих поставило серьезные вопросы. Отрицательные электроны не могли бы оставаться свободно лежащими снаружи положительного остатка, они были бы втянуты внутрь огромными силами, действующими на таких маленьких расстояниях; они должны были бы проваливаться внутрь положительного остатка. Нельзя было создать воображаемую модель из «+» и «—» частиц, удерживающих друг друга в равновесии, при существовании закона обратных квадратов для сил, действующих между частицами. Электрические притяжения и отталкивания в принципе могли бы удерживать их в равновесии, но образование при этом было бы нестабильным — любые малые нарушения должны были углубляться и вести к разрушению системы. (Школьник, проводящий опыты с магнитами, может заставить один из них какое-то мгновение плавать в воздухе, но этот плавающий магнит скоро свалится в сторону, если только школьник не приложит к нему силу, не подчиняющуюся закону обратных квадратов, например своими пальцами или деревянными подпорками.) Ирншоу показал, что такая нестабильность неизбежна. Любая совокупность покоящихся тел, действующих друг на друга только силами, подчиняющимися закону обратных квадратов, — электрические заряды, магниты, притягивающиеся массы, — находится в неустойчивом равновесии. Он вывел теорему, показывающую это из уравнения

>2V = 0 — математической записи закона обратных квадратов. Теорема Ирншоу не относится к системам, движущимся с ускорением, например, к электронам, вращающимся подобно планетам на орбитах, но предположение о таком движении порождало другое серьезное возражение. Электрон, бегающий по орбите, имеет ускорение v>2/r. Хорошо известно, что при движении зарядов с ускорением должны излучаться электромагнитные волны. Следовательно, вращаясь на орбите, электрон должен излучать, терять энергию, и его орбита стянется к центру за ничтожную долю секунды. Первые опыты в области радио показали, что если заряды ускоряются (при протекании переменных токов в радиоантеннах), то волны излучаются. Свет, относительно которого известно, что он по существу является радиоволнами с очень короткими длинами волн, по всей вероятности, излучается электронами, ускоряющимися где-то в атоме. Атомы иногда могут излучать свет, представить же их излучающими непрерывно мы не можем — они должны были бы скоро прекратить свое существование. Для обхода этой трудности Томсон представил электроны встроенными в положительный «пудинг» и предположил, что они связаны загадочными силами, не подчиняющимися закону обратных квадратов и обеспечивающими устойчивость атома.

Однако к 1910 г. эта картина перестала быть удовлетворительной. Альфа-частицы, использовавшиеся как снаряды для исследования структуры атома, дали результаты, которые не могли быть объяснены моделью атома в виде пудинга. Резерфорд предложил новую модель атома, почти пустого, с крошечным атомным ядром, окруженным электронами, движущимися по орбитам — и ничего не говорящую о трудной проблеме излучения электрона.


Рассеяние альфа-частиц и атом Резерфорда, 1910–1915 гг.

Поток альфа-частиц может насквозь простреливать тонкие слои, например фольгу из золота. Но некоторые из альфа-частиц отклоняются от прямого пути на небольшие углы, скажем 5 или 10°. В редких случаях альфа-частицы отклоняются на большие углы — на 60 или на 80°, а в очень редких случаях отклоняются на очень большие углы, например на 150°. Вы можете видеть такие случаи в камере Вильсона — будет наблюдаться «вилка» очень редкой формы.

Резерфорд считал экспериментально относительное число случаев рассеяния на большие углы и увидел, что модель атома Томсона не согласуется с тем, что большие отклонения случаются редко. Если «пудинг» представляет собой твердый объект, то


Еще от автора Эрик Роджерс
Физика для любознательных. Том 1. Материя. Движение. Сила

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.


Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Неизбежность странного мира

Научно-художественная книга о физике и физиках. Эта книга — нечто вроде заметок путешественника, побывавшего в удивительной стране элементарных частиц материи, где перед ним приоткрылся странный мир неожиданных идей и представлений физики нашего века. В своих путевых заметках автор рассказал о том, что увидел. Рассказал для тех, кому еще не случалось приходить тем же маршрутом. Содержит иллюстрации.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.