Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия - [194]

Шрифт
Интервал

. Любое реальное поле силы тяжести можно интерпретировать как локальную модификацию пространства-времени переходом в такую ускоренную систему, где поле исчезнет. Этот переход не помогает вычислениям, но указывает на новый смысл гравитации, который будет обсуждаться в следующем разделе.


3. Невесомость. Если поле силы тяжести действительно эквивалентно ускорению системы, то мы можем ликвидировать его, придавая нашей лаборатории подходящее ускорение. Обычная сила тяжести — притяжение Земли — действует вертикально вниз. Она эквивалентна направленному вверх ускорению g нашей системы. Если же мы позволим нашей лаборатории падать вертикально вниз, то не обнаружим в ней действия силы тяжести. В нашей лаборатории имеются два ускорения — «реальное» ускорение падающего тела и противоположное ему ускорение, заменяющее поле силы тяжести. Они в точности компенсируют друг друга и получается эквивалент стационарной лаборатории в отсутствие гравитации. Это попросту означает, что если лаборатория свободно падает, то в ней не чувствуется земного притяжения. Практически это осуществимо при космических полетах или спуске в свободно падающем лифте. В подобной ускоряющейся системе отсчета локально устранены все следы поля силы тяжести Земли или Солнца[267]. Теперь можно предоставить тело самому себе и понаблюдать за его поведением. Его путь в пространстве-времени оказывается прямой линией, и мы ожидаем, что тело будет подчиняться простым механическим законам. У нас получилась локальная инерциальная система отсчета.


4. Искусственная сила тяжести. Напротив, создавая большие реальные ускорения, можно получить мощное силовое поле. Если верить принципу эквивалентности, то можно ожидать, что это силовое поле будет действовать на вещество подобно очень сильному гравитационному полю. С этой точки зрения центрифуга тысячекратно увеличивает значение g.


5. Символические эксперимента. Для наблюдателя, движущегося с ускорением a, каждая масса m°, помимо других сил, действующих на нее со стороны известных тел m°∙а, кажется подверженной действию силы, противоположной ускорению. В поле силы тяжести напряженностью g масса 

притягивается с силой g. Здесь m° обозначает инертную массу, которая входит в формулу F = ma, а 
обозначает гравитационную массу в законе всемирного тяготения F = GMm/d>2. Принцип эквивалентности гласит, что поле силы тяжести напряженностью g можно заменить противоположно направленным ускорением наблюдателя g:

g должно быть равно m°g, т. е.

Принцип эквивалентности требует, чтобы гравитационная масса была равна инертной, и символический эксперимент давно доказал, что так оно и есть. Как вы увидите из последующего, Эйнштейн в своей общей теории относительности придал этому равенству двух сортов масс более глубокий смысл.


Общая теория относительности и геометрия

В малой области пространства-времени поле силы тяжести Земля, как и любые другие гравитационные поля, практически однородно. Поэтому в локальном опыте мы можем «убрать» притяжение, дав нашей лаборатории возможность свободно падать. При этом она будет подобна инерциальной системе в отсутствие гравитационных полей, т. е. предоставленные самим себе тела будут оставаться в ней в покое иди двигаться по прямой, а приложив к ним силу, мы обнаружим, что F = ma. Однако в большем масштабе, скажем в пространстве около Земли или около Солнца, мы должны использовать множество различных ускорений, чтобы устранить силу тяжести в каждой из локальных лабораторий. Чтобы согласовать прямолинейное движение в соответствии с первым законом Ньютона с его продолжением в соседней лаборатории, которая также свободно ускоряется, мы должны будем «искривить» траекторию. При переходе из лаборатории в лабораторию около тяготеющей массы придется изгибать ее еще больше. Как это объяснить? Вместо того чтобы говорить «мы обнаружим здесь, помимо всего, сипу тяжести», мы могли бы сказать. «Евклидова геометрия не соответствует реальному миру вблизи массивной Земли и Солнца». Общая теория относительности выбирает второе. Как и при создании специальной теории относительности, Эйнштейн искал простейшую геометрию, которая удовлетворяла бы новому предположению о том, что запись законов физики всегда должна быть одинаковой. Он пришел к геометрии общей теории относительности, в которой сила тяжести как некая странная сила, порождаемая массой, исчезла, уступив место возмущению пространства-времени в окрестности масс.

«С незапамятных времен физики и чистые математики работали в определенном согласии друг с другом относительно их доли участия в изучении природы. Сначала приходили математики и, проанализировав свойства пространства и времени, строили предварительную геометрию и кинематику (чистое движение). Затем, когда сцена была подготовлена, физики выводили действующих лиц: материальные тела, магниты, электрические заряды, свет и так далее, и представление начиналось. Однако, согласно революционной концепции Эйнштейна, действующие лица теперь сами готовят подмостки, появляясь на них: геометрия уже не предшествует физике, а неразделимо слита с ней в единый предмет. Свойства пространства в общей теории относительности зависят от присутствия материальных тел и их энергии…»


Еще от автора Эрик Роджерс
Физика для любознательных. Том 1. Материя. Движение. Сила

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Неопределенный электрический объект. Ампер. Классическая электродинамика.

Андре-Мари Ампер создал электродинамику — науку, изучающую связи между электричеством и магнетизмом. Его математически строгое описание этих связей привело Дж. П. Максвелла к революционным открытиям в данной области. Ампер, родившийся в предреволюционной Франции, изобрел также электрический телеграф, гальванометр и — наряду с другими исследователями — электромагнит. Он дошел и до теории электрона — «электрического объекта», — но развитие науки в то время не позволило совершить это открытие. Плоды трудов Ампера лежат и в таких областях, как химия, философия, поэзия, а также математика — к этой науке он относился с особым вниманием и часто применял ее в своей работе.


Физика

Удивительный мир науки, которая раскрывает законы существования материи, существования Вселенной, предстает на страницах этой книги. Наша энциклопедия поможет юному читателю осознать незаметную на первый взгляд связь, которая существует между научными открытиями и техническими достижениями человечества, а также познакомит его со становлением и развитием основных направлений физики, расскажет о знаменитых ученых, чьи имена навсегда вписаны в историю мировой науки.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Чем мир держится?

В списке исследователей гравитации немало великих имен. И сегодня эту самую слабую и одновременно самую могучую из известных физикам силу взаимодействия исследуют тысячи ученых, ставя тончайшие опыты, выдвигав, остроумные предположения и гипотезы.В книге рассказывается, как эта проблема изучалась в прошлом и как она изучается в настоящее время. Для широкого круга читателей.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.