Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия - [182]

Шрифт
Интервал


Чтобы капли падали на зонтик отвесно, вы должны наклонять его при беге или при ветре, если только ветер не несет воздух, а с ним и капли вслед за вами. (Если вы стоите под душем внутри мчащегося поезда, вам не придется наклонять зонтика.) Поэтому проведенные Бредли измерения аберрации говорили, что при движении Земли по орбите она перемещается в эфире в различных направлениях в пространстве со скоростью 30 км/сек.

Общее движение Солнечной системы в направлении каких-либо звезд остается незамеченным, ибо это дает постоянное отклонение направления на звезды, а Бредли измерял сезонное изменение наклона.


Опыт Майкельсона-Морли

Семьдесят пять лет назад были задуманы новые эксперименты для обнаружения абсолютного движения. Одним из наиболее известных и решающих был эксперимент, выполненный Майкельсоном и Морли в Кливленде. Он явился одним из первых великих научных достижений Нового Света. В своем эксперименте Майкельсон и Морли заставили два луча света, идущие в разных направлениях, «шагать в ногу». Здесь не было движущегося наблюдателя и фиксированного источника, как в случае Бредли и звезд. Как источник, так и наблюдатель перемещались в пространстве вместе с лабораторией, и экспериментаторы пытались обнаружить движение эфира, переносящего световые волны. Полупрозрачное зеркало расщепляло свет на два пучка, один из которых шел вертикально, а другой — горизонтально (фиг. 144).



Фиг. 144. Схематическое представление опыта Майкельсона-Морли.


Зеркала поворачивали пучки назад, и они, вновь соединяясь, давали интерференционную картину. Малейшее изменение времени пролета одного луча по сравнению с другим смещало бы эту картину. Предположим теперь, что в какое-то время вся аппаратура движется вверх. Внешний наблюдатель увидел бы, что луч света отклоняется «эфирным» ветром вверх или вниз, причем наклон для каждого из путей будет один и тот же. В другое же время года Земля как целое движется горизонтально, поэтому горизонтальному лучу понадобится больше времени, чтобы пройти путь в оба конца, чем вертикальному.

В обычных курсах вы найдете описание этого эксперимента. С помощью алгебры показывается, что если вся лаборатория движется сквозь «эфир», то свету понадобится больше времени на то, чтобы пройти вдоль потока и вернуться назад, нежели пройти поперек потока. Вы можете убедиться в этом на следующем примере. Пусть вместо света взад и вперед в клетке летает птица, а клетка движется относительно воздуха (фиг. 145 и 146).




Можно либо равномерно тащить клетку в стоячем воздухе, либо оставить, клетку в покое и создать эквивалентный поток воздуха в противоположном направлении (фиг. 147).



Остановимся на последнем варианте, но эту историю с тем же результатом можно пересказать и для движущейся клетки. Предположим, что скорость птицы относительно воздуха составляет 5 м/сек, клетка представляет собой квадрат 40 м х 40 м, а ветер дует со скоростью 3 м/сек. Чтобы пролететь от одного конца до другого и вернуться назад, птице требуется 10 сек + 10 сек[251], т. е. всего 20 сек. Но чтобы пролететь от одного конца до другого и вернуться назад, требуется

[40 м /(5–3) м/сек] + [40 м/(5 + 3) м/сек]

или 20 сек + 5 сек, т. е. большее время[252]. Посадите птицу в клетку наподобие только что описанной; время пролета птицы поперек и вдоль клетки скажет вам, насколько быстро относительно воздуха движется клетка. Конечно, можно воспользоваться двумя птицами. Поверните клетку в другом направлении, и время пролета птиц скажет вам, в каком направлении движется клетка и с какой скоростью. Подобный же эксперимент со звуковыми волнами в лаборатории, движущейся относительно воздуха, дал бы вам скорость лаборатории. Пусть в одном углу комнаты стоит горнист и подает сигнал, тогда время возвращения эха от противоположных стен выявит общее движение лаборатории или наличие ветра. (Разумеется, если эта движущаяся лаборатория закрыта со всех сторон и увлекает находящийся в ней воздух с собой, эхо не обнаружит никакого движения.)

Соответствующие опыты со световыми сигналами трудны, но интерференционная картина крайне чувствительна ко времени прохождения. Когда Майкельсон и Морли поставили такой опыт, а Миллер повторил его, ответ получился удивительным: никакого движения «эфира» нет. Опыты повторялись при разных ориентациях и в разные времена года всегда с одним и тем же ответом «движения нет». Будь вы опытным ученым, вы бы сразу спросили: «А какова точность? Каковы ошибки?»

Ответ: «Они таковы, что позволили бы надежно определить скорость, равную >1/>4 скорости движения Земли вокруг Солнца, а в последних[253] опытах — >1/>10 скорости Земли».



Фиг. 148. Геометрия полета.


Аберрация тем не менее указывала на движение «эфира», равное >10/>10 этой скорости. Добавились данные других опытов, оптических, электрических. Вновь и вновь получался все тот же «нулевой результат». Налицо было явное противоречие.

АБЕРРАЦИЯ ЗВЕЗДНОГО СВЕТА. Попадающий в телескоп свет звезд через 6 месяцев меняет свой наклон

-> Земля движется по орбите вокруг Солнца сквозь «эфир»

ОПЫТЫ МАЙКЕЛЬСОНА, МОРЛИ, МИЛЛЕРА. Сравнение времени прохождения в оба конца световых сигналов в двух перпендикулярных направлениях; дифракционная картина не меняется при повороте прибора или смене времени года


Еще от автора Эрик Роджерс
Физика для любознательных. Том 1. Материя. Движение. Сила

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Неизбежность странного мира

Научно-художественная книга о физике и физиках. Эта книга — нечто вроде заметок путешественника, побывавшего в удивительной стране элементарных частиц материи, где перед ним приоткрылся странный мир неожиданных идей и представлений физики нашего века. В своих путевых заметках автор рассказал о том, что увидел. Рассказал для тех, кому еще не случалось приходить тем же маршрутом. Содержит иллюстрации.


Неопределенный электрический объект. Ампер. Классическая электродинамика.

Андре-Мари Ампер создал электродинамику — науку, изучающую связи между электричеством и магнетизмом. Его математически строгое описание этих связей привело Дж. П. Максвелла к революционным открытиям в данной области. Ампер, родившийся в предреволюционной Франции, изобрел также электрический телеграф, гальванометр и — наряду с другими исследователями — электромагнит. Он дошел и до теории электрона — «электрического объекта», — но развитие науки в то время не позволило совершить это открытие. Плоды трудов Ампера лежат и в таких областях, как химия, философия, поэзия, а также математика — к этой науке он относился с особым вниманием и часто применял ее в своей работе.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.