Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия - [179]

Шрифт
Интервал

движение. Хотя все правила сложения векторов и законы движения выработаны в движущихся «земных» лабораториях, они тем не менее не обнаруживают никакого влияния этого движения.

Мы называем инерциальной любую систему отсчета или лабораторию, в которой справедливы законы Ньютона, предоставленные самим себе тела движутся по прямой с постоянной скоростью или остаются в покое, а сила сообщает пропорциональное ей ускорение. Мы установили, что любая система, движущаяся с постоянной скоростью относительно инерциальной, тоже будет инерциальна — в ней справедливы законы Ньютона. В последующих рассуждениях о галилеевой и эйнштейновской относительности мы предполагаем, что рассматриваем инерциальные системы подобно покоящейся относительно Земли. В обсуждениях общей теории относительности мы коснемся и других систем, в частности тех, которые ускоряются.

Природа не обеспечила нас строго инерциальной системой. Вращающаяся Земля в строгом смысле — не инерциальная система (ибо ее вращение вызывает центростремительное ускорение); если бы нам удалось найти одну идеальную систему, то принцип относительности гарантировал бы любое число других инерциальных систем. Любая система, движущаяся с постоянной скоростью по отношению к нашей первой, была бы столь же хорошей инерциальной системой; законы Ньютона, справедливые по определению в первоначальной системе, были бы справедливы и во всех остальных. Когда мы проводим опыты по механике и обнаруживаем, что законы Ньютона строго выполняются, то с точки зрения теории относительности просто демонстрируем, что наша первоначальная лаборатория была практически инерциальной системой. Напротив, любые эксперименты, демонстрирующие вращение Земли, показывают несовершенство нашего выбора инерциальной системы. Однако, сказав «Земля вращается», мы представляем себе идеальную систему, в которой законы Ньютона выполняются совершенно точно.

Теория относительности Галилея содержится в наших формулах. Когда для движущейся по горизонтали с ускорением ракеты мы пишем s = v>0t + >1/>2 at>2, то это означает «запустить ракету со скоростью v>0 и это скажется в качестве простого добавления слагаемого v>0t к пройденному расстоянию».

То же самое можно сформулировать следующими словами: «Экспериментатор ε запускает ракету из состояния покоя и наблюдает движение по закону s = >1/>2 at>2. Другой экспериментатор ε', бегущий со скоростью v>0, увидит движение по закону s' = v>0t + >1/>2 at>2. Он должен добавить v>0вследствие своего собственного движения» (фиг. 130).



Мы говорим, что равномерное и ускоренное движения не мешают друг другу, а просто складываются.

Наблюдатели ε и ε' сделали бы следующие заключения о расстоянии, пройденном за время t:

НАБЛЮДАТЕЛЬ ε

s = >1/>2 at>2

НАБЛЮДАТЕЛЬ ε'

s' = v>0t + >1/>2 at>2

Оба вывода говорят о том, что ракета движется с постоянным ускорением[246].

Оба заключения говорят, что в начальный момент t = 0 ракета находилась в начале координат.

Первое заключение говорит, что наблюдатель ε видит, будто ракета начала движение из состояния покоя. В момент пуска часов t = 0 ракета по отношению к наблюдателю не обладала скоростью. В этот момент ракета двигалась вместе с ним, если сам он двигался (так что ему она казалась покоящейся), а он дал ей возможность двигаться с ускорением.

Различие этих выводов свидетельствует, что относительная скорость наблюдателей ε и ε' равна v>0. Однако никакой информации об абсолютном движении здесь не содержится. Наблюдатель ε' может стоять на месте, в этом случае наблюдатель ε бежит назад с постоянной скоростью v>0 (запуская в момент t = 0 на бегу ракету, фиг. 131, б). А может быть, оба наблюдателя, и ε и ε', находятся в поезде, мчащемся с огромной скоростью (фиг. 131, в), но и тогда ε движется со скоростью v>0 относительно ε'. В любом случае v>0 будет относительной скоростью наблюдателей и никакой анализ их измерений не может сказать нам (или им), кто из них «действительно» движется.



Добавка v>0t только сдвигает график зависимости s от t, но не влияет на ускорение и силы. Следовательно, на вопрос: «С какой скоростью движемся мы в пространстве?», простая механика отвечает: «Никакие эксперименты с весами, пружинами и силами… не могут выявить нашей скорости. Ускорение дает о себе знать, но постоянную скорость мы не чувствуем». Мы можем измерять только относительную скорость, т. е. скорость по отношению к другим телам и системам отсчета.

Тем не менее мы все же рассуждаем так, как будто бы существует абсолютное движение, как будто бы мимо нас проносятся «верстовые столбы» пространства, но как их заметить? Однако прежде чем перейти к этому вопросу, где нас ждет большее разочарование, мы запишем правила относительного движения в простой алгебраической форме.




Фиг. 133.Обнаружение одинаковых механических законов.


Галилеево преобразование координат

Сравнение результатов двух наблюдателей можно провести просто и в общем виде. Допустим, наблюдатель в описывает события в своей лаборатории. Другой наблюдатель ε', пролетающий мимо лаборатории с постоянной скоростью v, описывает те же события так, как видит их он. Оба наблюдателя 


Еще от автора Эрик Роджерс
Физика для любознательных. Том 1. Материя. Движение. Сила

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.


Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Неизбежность странного мира

Научно-художественная книга о физике и физиках. Эта книга — нечто вроде заметок путешественника, побывавшего в удивительной стране элементарных частиц материи, где перед ним приоткрылся странный мир неожиданных идей и представлений физики нашего века. В своих путевых заметках автор рассказал о том, что увидел. Рассказал для тех, кому еще не случалось приходить тем же маршрутом. Содержит иллюстрации.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.