Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия - [155]

Шрифт
Интервал

>- Охлаждение сжатого воздуха при расширении в атмосферу ∙ 4,31

>- Паровая машина (переход теплоты в механическую энергию). Арендовалась заводская паровая машина, для которой определялось полное количество тепла, переданное топкой пару; далее вычислялись затраты тепла на излучение, в конденсаторе и т д. и определялась полученная механическая энергия ∙ (4,12-4,23)

>1858 ∙ Фавр

>Трение металлов в ртути ∙ 4,05 

>1857–1859 ∙ Вебер, Фавр, Зильберман, Джоуль, Боша, Ленц и Вебер 

>Косвенные электрические методы. Измерялась теплота, выделяемая током в проводах или в химических батареях. Оценка механической энергии производилась косвенно по электрическим приборам (амперметру, вольтметру и/или омметру). Электрические единицы еще не были твердо установлены, так что результат ненадежен ∙ (3,9; 4,2; 4,2; 4,2; 4,1; 4,1; 3,9–4,7)

>1865 ∙ Эдлунд 

>Расширение и сжатие металлов ∙ 4,35; 4,21; 4,30 

>1867 ∙ Джоуль

>Количество тепле, выделенного известным током на известном сопротивлении ∙ 4,22

>1867 ∙ Вебер

>То же ∙ 4,21 

>1870 ∙ Виолле 

>Вращающийся в магнитном поле диск нагревался вихревыми электрическими токами. Измерялся механический момент и выделение тепла ∙ 4,26; 4,26; 4,27

>1875 ∙ Пулуй 

>Трение металлов ∙ (4,167-4,180) 

>1878 ∙ Джоуль

>Перемешивание воды крыльчаткой; усовершенствованная установка (среднее из 34 опытов) ∙ 4,158 (5)


* * *

Тем временем и другие экспериментаторы представили новые доказательства. Во Франции Хирн сделал схожие с Джоулем сравнения и, кроме того, добавил еще два новых, хотя и грубых, но важных опыта, поскольку они отличались от остальных. С помощью огромного железного молота в виде маятника он расплющивал кусок свинца о каменную наковальню. При этом измерялась кинетическая энергия маятника до удара с учетом остаточной кинетической энергии и потери ее сравнивались с теплотой, выделившейся в неупругом свинце. Хирн производил также и обратные измерения, когда теплота исчезала, а механическая энергия появлялась. Он арендовал обычную фабричную машину и замерял поступавшее количество тепла и выход механической энергии. Он определял теплоту горячего пара, вычитал из нее теплоту, растраченную в воздух, и т. д., и сравнивал остаток с увеличением механической энергии.

Посмотрите же теперь на все «улики» и судите сами. Получился длинный список результатов — от первых грубых прикидок до прецизионных измерений. Коэффициент перехода выражен в современных единицах — дж/Кал. Если вы рассмотрите работы самого Джоуля, то поймете, почему единица энергии названа его именем.


* * *

>Итак, все было ясно. Оставалось лишь узнать самые «пустяки». Величина механического эквивалента J измерялась теперь с такой точностью, что нужно было пользоваться более точным значением ускорения силы тяжести g, а величина 1 Кал зависела от того, взвешивалась ли вода бронзовой гирей в 1 кг в воздухе или вакууме. Кроме того, стало ясно, что при повышении температуры воды от 10 до 11 °C и от 17 до 18 °C требуется разное количество тепла. Если, по определению, в качестве 1 Кал мы возьмем удельную теплоемкость при 20 °C (удобная комнатная температура), то при более низкой температуре она будет несколько больше. Так что для измерений с точностью до 0,1 % и выше. Мы должны договориться, при какой температуре определяется Калория.

>За последние восемь лет было проделано много точных измерений величины J. Ниже приведены некоторые результаты, полученные при взвешивании в вакууме и использовании «двадцатиградусной Калории» (т. е. определенной нагреванием воды от 19,5 до 20,5 °C). 

>1878 ∙ Джоуль 

>Перемешивание воды. Результаты предыдущего эксперимента пересчитаны на взвешивание в вакууме и измерения газовым термометром ∙ 4,172

>1879 ∙ Роуланд 

>Перемешивание воды крыльчаткой, приводимой в движение паровой машиной. Большое внимание было уделено конструкции прибора и точности измерения температуры ∙ 4,179

>1892 ∙ Мицелеску 

>Перемешивание воды ∙ 4,166 

>1899 ∙ Каллендер и Барнес 

>Нагревание электричеством непрерывного потока воды. Повышение температуры измерялось также электрически! и методами ∙ 4,188

>1927 ∙ Леби и Геркус 

>Перемешивание воды ∙ 4,1802 ± 0,0001 

>1939 ∙ Осборн и др. 

>Нагревание воды электричеством ∙ 4,1819


* * *

Так в конце концов было установлено, что теплота, химическая и электрическая энергии способны к взаимным превращениям с потенциальной и кинетической энергиями и представляют собой различные формы универсальной сохраняющейся энергии.

Но энергия измерялась в разных единицах: потенциальная и кинетическая энергии в единицах работы, таких, как (ньютон)∙(метр), а теплота — в кг воды на 1 °C, или Калориях. Химическая энергия измерялась косвенно в тепловых единицах. Электрическая энергия могла измеряться в любых единицах. Мы использовали отношение этих единиц (1 Кал):(1 ньютонм) как «улику» против теплорода. Если теперь мы пришли к выводу, что теплота — это форма энергии, то их отношение должно быть универсальным, и нам необходимо точное значение этой величины. Взяв среднее из наиболее точных измерений, мы можем сказать, что

Калория при 20 °C = 4180 дж,

Калория при 15 °C = 4184 дж.


Еще от автора Эрик Роджерс
Физика для любознательных. Том 1. Материя. Движение. Сила

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.


Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Неизбежность странного мира

Научно-художественная книга о физике и физиках. Эта книга — нечто вроде заметок путешественника, побывавшего в удивительной стране элементарных частиц материи, где перед ним приоткрылся странный мир неожиданных идей и представлений физики нашего века. В своих путевых заметках автор рассказал о том, что увидел. Рассказал для тех, кому еще не случалось приходить тем же маршрутом. Содержит иллюстрации.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.