Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия - [142]

Шрифт
Интервал

и дающая стандартные значения 0 и 100 в точках таяния льда и кипения воды. Теперь газовый термометр позволит нам измерить температуру, если мы знаем давление газа в баллоне при этой температуре. Пунктирная линия на фиг. 76 показывает, как найти температуру воды, при которой давление газа составляет 0,6 м ртутного столба.

После того как мы выбрали газовый термометр в качестве стандарта, можно сверить с ним ртутный и глицериновый. Так было обнаружено, что расширение большинства жидкостей в зависимости от температуры, измеренной газовым термометром, несколько нелинейно Показания термометров двух типов расходились между точками 0 и 100, согласие в которых получается по определению. Но ртуть, как это ни странно, дает почти прямую линию. Вот теперь можно сформулировать «достоинство» ртути: «По газовой шкале температур ртуть расширяется равномерно» Это' удивительное совпадение показывает, что в свое время мы сделали очень удачный выбор — именно поэтому сейчас для непосредственного измерения температуры можно пользоваться обычными ртутными термометрами.



Фиг. 76.Газовая термометрия.


Абсолютная температура. Абсолютный нуль

Другое преимущество газового термометра — он указывает на наличие абсолютного нуля. Если мы охладим термометры, изображенные на фиг. 75, то в термометре а газ сожмется, а в термометре б давление упадет. Экстраполируя это поведение до еще меньших температур, мы наткнемся на абсолютный нуль, при котором газ приходит к нулевому объему в термометре а и нулевому давлению в термометре б. Если газы при уменьшении температуры действительно сохраняют свои свойства (чего на самом деле нет), нет надежды опуститься ниже абсолютного нуля или даже достичь его. Реальные газы превращаются в жидкости и затем в твердые тела раньше, чем охладятся до такой температуры, но это не мешает нам мечтать об абсолютном нуле как интригующем пределе. Его положение на обычной шкале Цельсия можно найти путем экстраполяции прямолинейной температурной зависимости газового термометра. Тщательные измерения с реальными газами показали, что абсолютный нуль следует поместить на шкале Цельсия приблизительно при —273 °C независимо от сорта газа. Попытки достичь этой температуры любыми способами охлаждения позволили подойти к ней довольно близко, но достичь ее не удалось. Дело в том, что этот предел вообще недостижим.



Фиг. 77. Температурная шкала газового термометра.

>а — температура газа в °С (по собственной шкале); б — абсолютная температура газа в °К (по собственной шкале)


Те, кому приходится вычислять объем газа при какой-то фиксированной температуре из измерений, проведенных при других температурах[190], используют эту прямую линию, проходящую через абсолютный нуль, чтобы свести задачу о расширении газа к простой пропорции наподобие следующей. Берем график температурной зависимости и перерисовываем его в новых осях с началом координат при —273 °C. Теперь температура отсчитывается, начиная с нуля в новом начале координат (это будет теперь «абсолютный нуль», или —273 °C). Новую температуру, отличающуюся от старой на 273°, мы назовем «абсолютной». Так мы отодвинули начало (но не сам график) на 273 единицы налево. Теперь наша прямая линия проходит через начало координат графика, где давление отложено по вертикальной оси, а абсолютная температура — по горизонтальной.

Давление газа, р, изменяется пропорционально абсолютной температуре Т. Для любых двух температур Т>1 и Т>2:

p>1/p>2 = T>1/T>2

Воспользовавшись газовым термометром (фиг. 75, а) или законом Бойля, мы находим, что дляобъемов V>1 и V>2 при постоянном давлении

V>1/V>2 = T>1/T>2

Этот закон верен для газов в области обычных температур, причем автоматически, ибо прямая линия проведена именно для определения температуры.



Фиг. 78.Зависимость давления газа (объем, постоянен) от абсолютной температуры (а) и зависимость объема газа (давление постоянно) от абсолютной температуры (б).


Если считать, что эта зависимость имеет место как при очень низких, так и при очень высоких температурах, то обнаружится, что разные реальные газы дают разные шкалы. Таким образом, мы должны вообразить идеальный газ — «излюбленный трюк теоретического мышления» — и пользоваться им для определения универсальной шкалы температур от абсолютного нуля до сколь угодно больших. При обычных температурах идеальный газ похож на большинство реальных, но не проявляет характерных особенностей своих «младших братьев», типа СО>2, и продолжает следовать простым законам поведения газов даже тогда, когда реальные газы начинают отходить от него и даже сжижаться[191].


Кинетическая теория и газовая температура

Кинетическая теория, которой мы верим благодаря успеху ее предсказаний, утверждает, что давление газа должно изменяться пропорционально средней кинетической энергии. Поскольку в газовой температурной шкале давление пропорционально абсолютной температуре, то, комбинируя эти два соотношения, получаем

КИНЕТИЧЕСКАЯ ЭНЕРГИЯ МОЛЕКУЛ ~ АБСОЛЮТНАЯ ТЕМПЕРАТУРА.

Поэтому температура приобретает простой смысл:

Абсолютная температура измеряет среднюю кинетическую энергию молекул газа


Еще от автора Эрик Роджерс
Физика для любознательных. Том 1. Материя. Движение. Сила

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.


Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Неизбежность странного мира

Научно-художественная книга о физике и физиках. Эта книга — нечто вроде заметок путешественника, побывавшего в удивительной стране элементарных частиц материи, где перед ним приоткрылся странный мир неожиданных идей и представлений физики нашего века. В своих путевых заметках автор рассказал о том, что увидел. Рассказал для тех, кому еще не случалось приходить тем же маршрутом. Содержит иллюстрации.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.