Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия - [13]
Это движение Земли объясняло ежедневное движение звезд на небе: внешняя хрустальная сфера при этом могла покоиться. (Были еще более далекие предположения — между Землей и центральным огнем находится еще одна планета, которая предохраняет антиподов от ожога, а быть может сама есть антипод; наличие этой планеты увеличивало общее число небесных тел до священного числа Пифагора — десяти.)
Столь фантастическая схема была весьма революционной: согласно ей Земля рассматривалась как планета, а не как божественный центр, и вращение звездной сферы можно было свести к ежедневному вращению Земли. Эта схема могла бы послужить основой для более поздних теорий движения Земли, но просуществовала она недолго и в ней никогда не предполагалось, что центром центром мироздания является Солнце или что Земля просто вращается. Эта последняя простая идея вскоре была высказана, но не встретила поддержки.
Последователи Пифагора знали, что Земля круглая. Они основывали свои предположения на простом принципе (совершенство сферы) и на фактах. Движение небесных тел они описывали с помощью простой схемы, которую можно было назвать теорией, в противоположность более точным повседневным правилам, развитым в Вавилоне. Если рассматривать эту первую греческую систему вращающихся сфер как некую машину, выдающую предсказания, то она была безнадежно неточной, зато как система знаний оказалась действительно превосходной, ибо давала ощущение разумности устройства Вселенной.
Фиг. 28.Схема Филолая.
>а — система сфер; б — схема орбит. Земля вращается вокруг центрального огня, совершая полный оборот за 24 часа Этим объясняется суточное движение звезд, Солнца, Луны и планет. Сферы медленно вращаются в том же направления, на них находятся Солнце, Луна и планеты.
Сократ (~ 430 г. до н. э.). Этот великий философ боролся за ясность мышления и четкие определения, осуждая сумасбродные фантазии астрономов. Вероятно, именно он помог астрономии стать индуктивной наукой, основанной на экспериментальных наблюдениях.
Примерно в то же время два философа, Демокрит и Левкипп, пытались создать атомистическую теорию, чтобы объяснить свойства материи и даже строение мира в целом. Они считали невероятным, что материю можно беспредельно делить на все более мелкие части. Должны существовать крошечные неделимые атомы. Хотя у этих ученых не было экспериментальных доказательств и они основывались лишь на фантастических предположениях, им удалось создать теорию, которая выглядит разумной и в наши дни[18].
Они подготовили атомистическую теорию, над которой задумывались и которой иногда пользовались на протяжении многих веков, пока развитие человеческих знаний в области химии не привело в течение последних двухсот лет, наконец, к созданию атомной теории. Их записи были утеряны, но римский поэт Лукреций изложил двумя столетиями позже эти идеи в своей великолепной поэме. Он считал, что «разум освобождает человека от страха перед богами» — поэтическая версия современной точки зрения о том, что «наука излечивает от суеверий».
Хотя атомистическая теория не была непосредственно связана с астрономией, однако высказывавшееся в ней утверждение о том, что атомы отделены друг от друга пустотой, позволило легче усвоить представление о пустом пространстве между небесными телами и за ними, в противоположность представлению древних греков о том, что пространство ограничено и заполнено невидимым эфиром.
Платон (~ 390 г. до н. э.), строго говоря, не был астрономом. Он считал правильной простую схему сфер и размещал по порядку их скоростей вращения: Луну, Солнце, Меркурий и Венеру, движущиеся вместе с Солнцем, Марс, Юпитер, Сатурн. Первая схема, которая, казалось, успешно описывала движения планет, была создана Евдоксием, возможно по предложению Платона.
Евдоксий (~ 370 г. до н. э.) изучал геометрию и философию под руководством Платона, затем путешествовал по Египту и, возвратившись в Грецию, стал великим математиком и основателем научной астрономии. Собирая греческие и египетские данные по астрономии и добавляя лучшие из наблюдений, проведенных в Вавилоне, он предложил схему, которая могла объяснить наблюдаемые явления.
Система из нескольких сфер, по одной для каждого движущегося небесного тела, очевидно была неудовлетворительной. Планета не движется с постоянной скоростью по круговой траектории относительно звезд, она движется то быстрее, то медленнее, даже временами останавливается и начинает двигаться в обратном направлении. Солнце и Луна движутся по своим, годовым и месячным траекториям с переменными скоростями[19]. Евдоксий разработал схему, состоящую из большого числа концентрических сфер, подобно шелухе луковицы. Каждой планете соответствовало несколько сфер, расположенных одна внутри другой и вращающихся вокруг различных осей: по три сферы для Солнца и Луны, по четыре для каждой планеты и одна внешняя сфера для всех звезд. Каждая сфера закреплена на оси, которая проходит через отверстие в следующей сфере, и расположена вне, причем оси вращения имеют различные направления. Комбинированные движения с надлежащим образом выбранными направлениями вращения соответствуют наблюдениям. Такая система была проста по форме (сферы) и основана на простом принципе (равномерное вращение); она могла удовлетворительно объяснить наблюдаемые факты путем введения, по мере необходимости, добавочных сфер. Это была в самом деле хорошая теория.
Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.
Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.