Физика для любознательных. Том 1. Материя. Движение. Сила - [70]

Шрифт
Интервал

). Окрашенная вода поднимается вверх вопреки силе тяжести, опровергая правило: «вода в сообщающихся сосудах устанавливается на одном уровне». Однако в U-образной трубке с колонами разного сечения жидкость все же устанавливается на одном уровне (фиг. 122, б). Если вспомнить обсуждение относительной роли поверхностных и объемных эффектов, можно догадаться, что влияние поверхностного натяжения будет более заметно в приборах малых размеров; например, в небольшой U-образной трубке (фиг. 122, в). Конечно, это то же самое, что мы уже видели при погружении тонкой трубки в чернила.

Наброски, представленные на фиг. 122, г, помогают понять переход от одного опыта к другому. Если жидкость поднимается в тонких трубках, то в еще более тонких она должна подняться еще выше. Проверьте это (см. фиг. 122, д).



Фиг. 122. Капиллярные явления.


Поскольку это следствие поверхностного натяжения проявляется в трубках, «тонких, как волос», оно получило название от латинского слова «волос» — capilla. Таким образом, капиллярность — это старое название поверхностного натяжения, которое еще применяется, чтобы охарактеризовать поведение жидкостей в тонких трубках. Это красивое название, но оно не объясняет подъема жидкости. Сказать, что вода поднимается по тонкой трубке вследствие капиллярности, по существу то же, что сказать «вследствие поведения тонких трубок». Рассматривая через увеличительное стекло мениск (поверхность жидкости) в тонкой трубке, мы увидим, что он висит, как прикрепленный к стеклу изогнутый мешок, весьма похожий на одеяло пожарников, которые ловят выбрасывающегося из окна горящего дома тяжелого мужчину (фиг. 122, е).

Снова возникает мысль о резиновой оболочке. Если измерить силы, удерживающие оболочку, то видно, что эти же силы определяют форму маленьких капель. Можно даже говорить, что оболочка удерживает поднимающуюся по трубке жидкость[75], но более реально говорить о молекулах, которые вскарабкиваются по внутренней поверхности трубки и образуют изогнутый мениск.

Жидкости поднимаются не только в круглом стеклянном капилляре. Капиллярность проявляется в любом узком пространстве.

Когда вода стекает между щетинками малярной кисти или увлажняет в ванне ваши волосы, то она заполняет не полые волоски, а узкие промежутки между отдельными волосками. На таком поведении жидкостей основано всасывание масла в ламповый фитиль, воды в банное полотенце и т. д.


Задача 3 (трудная). Формула капиллярности

Допустим, что подъем жидкости в капилляре определяется разностью давлений по обе стороны мениска. Вернитесь к опыту с двумя соединенными друг с другом мыльными пузырями (см. фиг. 111, д). Какой вывод только из этого опыта можно сделать о соотношении между высотой подъема в капилляре и его диаметром?


Задача 4. Капиллярность в несмачиваемой трубке

Возьмем жидкость, которая образует со стенками трубки большой краевой угол. На фиг. 123 показана, например, ртуть в стеклянной трубке.



Фиг. 123.К задаче 4.


Уровень ртути в широкой трубке показан, но рисунки не закончены. Набросайте в тетради все эти рисунки и закончите их.


Применения капиллярности

Чтобы жидкость втягивалась в капилляр, а не только поднималась вверх, и вообще проникала в поры, необходим малый краевой угол между жидкостью и стенками пор. При большой величине краевого угла предметы будут оставаться сухими. Ниже приведены примеры, которые демонстрируют роль капиллярности и смачивания в природе и в быту.

1) Системы, где нужен малый краевой угол (желательно при большом поверхностном натяжении)

Вода на волокнах банных полотенец и т. д.

Чернила на конце пера (щель на конце пера подает чернила на бумагу вследствие капиллярности; стальные перья, применявшиеся прежде, когда они бывали новыми, имели большой краевой угол, и для улучшения работы перья следовало смочить слюной).

Чернила на бумаге (но поры в бумаге должны быть закрыты).

Кровь на бинтах.

Капли от насморка на слизистой оболочке носа.

Припой на металле (для уменьшения краевого угла применяют флюс).

? Слюна на пище.

Растворитель для краски на сухом порошке красителя.

Жидкая краска на окрашиваемых поверхностях (с этим связан ряд вопросов в технике живописи).

Мыльная вода при стирке грязной одежды.

? Вода на стеклах очков (здесь нет узких промежутков, но при небольшом краевом угле конденсирующаяся на стекле вода создает плоскую пленку, а не туман из капелек).

2) Системы, где нужен большой краевой угол

Вода на спине утки, на тканях для палаток и зонтов.

? Блинное тесто на сковороде.

Вода на полу в ванной.

? Вода на стеклах очков (мелкие капли быстрее испаряются).

Важную роль капиллярность играет в садоводстве. Вода проникает в тонкие промежутки между частицами почвы. Разрыхление и вскапывание изменяет размеры этих промежутков и затрудняет доступ воды из глубины почвы к поверхности, предотвращая тем самым ее испарение.

Кирпичи пористы. Кирпичные дома на высоте 30 см или более от поверхности земли должны иметь изоляцию от влаги из непористого материала.


Объяснение капиллярности с молекулярной точки зрения

По всей трубке вверх поднимается очень тонкий слой жидкости, возможно, толщиной в одну молекулу, а за ним ползет основная масса жидкости, образуя искривленный мениск. Силы


Еще от автора Эрик Роджерс
Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.


Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Неизбежность странного мира

Научно-художественная книга о физике и физиках. Эта книга — нечто вроде заметок путешественника, побывавшего в удивительной стране элементарных частиц материи, где перед ним приоткрылся странный мир неожиданных идей и представлений физики нашего века. В своих путевых заметках автор рассказал о том, что увидел. Рассказал для тех, кому еще не случалось приходить тем же маршрутом. Содержит иллюстрации.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.