Физика для любознательных. Том 1. Материя. Движение. Сила - [59]

Шрифт
Интервал


Открытие Гука

В 1676 г. Роберт Гук объявил о своем открытии. Это был простой закон, точно выполнявшийся в широком диапазоне; ему была предназначена важная роль в физике и технике. Гук был в восторге от своего открытия, но своим коллегам он не очень доверял и поэтому был озабочен, как бы кто-нибудь не приписал это открытие себе.

В те времена публикация открытий в периодических научных журналах еще только приходила на смену монографиям и частным письмам, поэтому все еще было опасно с кем-нибудь поделиться своим открытием. Сразу же кто-то мог сказать: «О, мы открыли это давным-давно!» И Гук придал своему закону о растяжении пружин вид анаграммы:

ceiiinosssttuv.

Это было своеобразное патентование открытия. Он выждал два года, чтобы конкуренты могли сделать заявки о своих открытиях, связанных с пружинами, а затем дал расшифровку своей головоломки: «ut tensio, sic vis», ила «каково удлинение, такова и сила»[64].



Фиг. 99.Результаты испытания пружин.


Гук открыл, что при растяжении пружины возрастающей силой удлинение изменяется прямо пропорционально этой силе.

Как вам известно из практики, это простое соотношение выдерживается для стальных пружин с замечательной точностью в широком диапазоне удлинений. Оно справедливо также для пружин, сделанных из других материалов, возможно, лучше всего для спиралей из кварца (чистый плавленый песок). Все это не было бы ни странно, ни полезно, если бы свойство пропорциональности сохранялось только в узком диапазоне малых удлинений. Ведь почти любую кривую на коротких отрезках можно рассматривать с некоторым приближением как прямую линию. Но это соотношение справедливо и в случае, когда удлинение пружины в несколько раз превосходит ее первоначальную длину. Оно позволяет многим из нас, подобно Гуку, вкусить трепет успеха, связанный с открытием столь ясного и простого свойства природы.

С поведением материалов по закону Гука мы встречаемся во многих случаях растяжения, сжатия, скручивания, изгиба, упругой деформации любых видов. Вот несколько примеров:

а) растягивание проволоки:

УДЛИНЕНИЕ ~ РАСТЯГИВАЮЩАЯ СИЛА;

б) растяжение или сжатие стержня:

Δ ДЛИНЫ ~ СИЛА;

в) кручение стержня:

УГОЛ КРУЧЕНИЯ ~ ЗАКРУЧИВАЮЩАЯ СИЛА;

г) изгиб балки:

ПРОГИБ БАЛКИ ~ НАГРУЗКА;

д) сжатие твердого тела или жидкости:

ИЗМЕНЕНИЕ ОБЪЕМА ~ ПРИЛОЖЕННОЕ ДАВЛЕНИЕ;

вообще:

ДЕФОРМАЦИЯ ~ ДЕФОРМИРУЮЩАЯ СИЛА.



Фиг. 100.


Это общее правило называется «законом Гука» в честь сделанного Гуком открытия. На фиг. 101–103 показаны приспособления для изучения приложений закона Гука.



Фиг. 101. Растяжение проволоки.



Фиг. 102.Кручение металлического стержня.

>Левый конец образца зажат, а правый конец соединен с большим диском, который свободно вращается; грузы подвешены на ленте, обернутой вокруг диска. Стрелка указывает величину угла кручения.



Фиг. 103. Прогиб деревянной балки.

>а>балка закреплена одним концом; вблизи второго нагруженного конца измеряется вертикальное отклонение; б — балка оперта вблизи ее концов и нагружена в середине.


Научные законы

Когда мы говорим, что проволока «подчиняется» закону Гука при небольших нагрузках, мы вовсе не хотим сказать, что Гук или его закон заставляют проволоку вести себя подобным образом. Мы просто подразумеваем, что она именно так ведет себя, — так показал эксперимент. И это пример того поведения, которое описывает в общем виде закон Гука. Слово «закон» дезориентирует. Оно используется в науке для характеристики зависимости или поведения (например, материала или вещества), которое установлено и имеет, по-видимому, весьма общий характер, а также представляется нам простым и важным.

Большинство научных законов найдено на основе эксперимента индуктивным путем, как и закон Гука. Некоторые были выведены методом дедукции из тех или иных теоретических схем: в химии закон кратных отношений развит на основе атомистической теории, закон равномерного распределения энергии между частицами выведен из статистической механики (и оказался частично неприменимым). Иногда утверждению присваивается другое название — «принцип», или «правило», или даже (достойный термин) «соотношение». Например: принцип сохранения энергии, квантовые правила отбора, соотношение масса-энергия Е = >2. Закон, принцип, правило[65] — теперь вы можете рассматривать эти понятия как очень схожие между собой; все они суммируют то, что мы обнаружили или что по нашему мнению может происходить в природе. Поэтому выражение «… подчиняется… закону» надо считать неудачным. Научные законы не командуют природой подобно полисмену. Их нельзя использовать для «объяснения» того, что подсказало нам мысль о существовании этих законов, но они могут пролить свет на другие эксперименты. Законы сами возникли из экспериментов, и вряд ли их можно считать ниспосланными свыше причинами явлений, выявленных самими экспериментами. Скорее законы — это простые правила, которые мы извлекаем из изучаемого нами запутанного клубка, основные нити экспериментальных сведений, которые вырабатываются в науке. Наука ничего не могла бы достичь, если бы знание было просто клубком запутанных фактов или случайных наблюдений.


Еще от автора Эрик Роджерс
Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.


Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Неизбежность странного мира

Научно-художественная книга о физике и физиках. Эта книга — нечто вроде заметок путешественника, побывавшего в удивительной стране элементарных частиц материи, где перед ним приоткрылся странный мир неожиданных идей и представлений физики нашего века. В своих путевых заметках автор рассказал о том, что увидел. Рассказал для тех, кому еще не случалось приходить тем же маршрутом. Содержит иллюстрации.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.