Физика для любознательных. Том 1. Материя. Движение. Сила - [54]

Шрифт
Интервал

d∙(УСКОРЕНИЕ СИЛЫ ТЯЖЕСТИ g),

ДАВЛЕНИЕ НА ЛЮБУЮ ПЛОЩАДЬ ДНА = ГЛУБИНА ЖИДКОСТИ ∙ ПЛОТНОСТЬ. g.


Закон V. Разность давлений между двумя точками в жидкости равна

Δ (ВЫСОТА) ∙ ПЛОТНОСТЬ.

Чтобы найти разность давлений (P>Y Р) между точками Y и Х, выделим в жидкости прямоугольный объем или вертикальный столб с площадью основания А и высотой h от Y до X (фиг. 88).



Фиг. 88.Закон V. Разность давлений между двумя точками в жидкости равна Δ (Высота)∙Плотность.


Этот участок жидкости находится в равновесии, поэтому равнодействующая всех вертикальных сил, действующих на него, должна быть равна нулю. На этот участок жидкости действуют силы:

Вес жидкости в столбе, hAd;

Направленное вниз давление окружающей жидкости на вершину,

PА;

Направленное вверх давление окружающей жидкости на основание,

P>YА.

Отсюда

P>YА = PА + hAd,

P>Y — P = hd.

В «хороших» (абсолютных) единицах

P>Y — P = hdg


Измерение разности давления с помощью U-образных манометров

Для измерения давлений часто используют заполненные жидкостью U-образные трубки, которые не обязательно должны иметь колена одинакового размера. Их действие основано на только что выведенной формуле

РАЗНОСТЬ ДАВЛЕНИЙ = hd.

Например, надо измерить давление р, которое создается дыханием человека (фиг. 89).



Фиг. 89.Измерение давления.


Итак, давление в точке М равно р. Давление в точке N, противоположной М, также равно р (чтобы убедиться в этом, можно проследить переход от точки М вниз до дна, затем поперек соединительного колена и потом вверх к точке N). В точке L давление равно атмосферному, А. Но

(ДАВЛЕНИЕ В N) = (ДАВЛЕНИЕ В L) + (hd);

т. е.

ДАВЛЕНИЕ p = A + hd.


Единицы давления

С помощью формулы p = hd получают разность давлений в «инженерных единицах», например в кг/м>2. (Строго говоря, применяемую здесь единицу силы надо называть килограмм∙сила.)

Умножив полученную величину на ускорение силы тяжести g (9,8 ньютон 1 кг), найдем давление в «абсолютных» единицах, например в ньютон/м>2.

Иногда давление выражают в виде высоты столба жидкости, например в сантиметрах водяного столба, подобно тому как расстояние в горах можно выражать в часах (подъема).

Иногда давление выражают в атмосферах, используя в качестве стандарта среднее значение атмосферного давления.


Опыт 5(а). Простые измерения давления. Перечисленные ниже измерения производятся с помощью U-образных трубок с жидкостью.

Трудно с достаточной точностью непосредственно отсчитать разность между уровнями в обоих коленах. Значительно лучше определять высоту от основания прибора до каждого из уровней по отдельности. Под действием поверхностного натяжения поверхность жидкости в каждой трубке образует искривленный мениск. Так как необходимо найти разность уровней, то в обоих коленах следует производить измерения от одной и той же части мениска. Обычно предпочитают использовать для измерения дно мениска; при этом глаз наблюдателя должен находиться на уровне мениска. (Нужно ли измерять также начальные уровни до приложения давления? Почему?)

1) Измерьте избыток давления в ваших легких над атмосферным давлением в сантиметрах водяного столба. Затем вычислите давление в легких в кг/см>2. Так как величину атмосферного давления вы еще не знаете, обозначьте ее буквой А и просто записывайте +А там где это необходимо.

2) Если вам угодно, измерьте также минимальное давление в легких, всасывая воздух в себя.

3) Измерьте избыток давления в ваших легких над атмосферным давлением в метрах ртутного столба.

Затем давление в легких вычислите в единицах: а) кГ/мг>2; б) ньютон/м>2. Атмосферное давление учитывайте в виде слагаемого +А.

4) Измерьте избыточное давление в газовой сети в сантиметрах водяного столба.

5) Демонстрационный опыт. Вооружитесь барометром, с помощью которого можно измерить атмосферное давление. Запишите «высоту барометра» в сантиметрах и метрах ртутного столба. Вычислите атмосферное давление в единицах:

а) кг/см>2; б) кГ/м>2; в) ньютон/м>2. (В этих единицах, вероятно, получатся значения, близкие к легко запоминающимся круглым цифрам. Они потребуются в гл. 25[54])




Фиг. 90.Барометр.


Задача 6

При расчете давления воздуха по высоте столба в барометре предполагается, что в верхней части барометрической трубки существует вакуум.

а) Почему в трубке должен быть вакуум?

Опишите подробно методику эксперимента, подтверждающую это.

б) Как практически можно проверить, что там вакуум?




Фиг. 91.Проверка качества вакуума.


Опыт 5(б). Проверка закона Бойля (в его первоначальной форме).

Это простой опыт, использующий устройство, придуманное самим Бойлем.

Роберт Бойль описал свои опыты над «пружиной из воздуха» в статье, доложенной Королевскому обществу в Лондоне в 1661 г.; отрывок из этой статьи приведен ниже. Повторите опыт Бойля, имея в своем распоряжении ртуть и J-образную стеклянную трубку, подобную изображенной на фиг. 92. (Изобразите две стадии опыта с помощью двух рисунков, отметив на них результаты измерений.)



Фиг. 92.Прибор для проверки закона Бойля.


«Тогда мы взяли длинную стеклянную трубку, нагрели ее на паяльной лампе и довольно ловко согнули внизу так, что отогнутое колено было почти параллельно основной части трубки, а отверстие на коротком колене герметически запаяли. К этому колену мы тщательно приклеили ровный лист бумаги, который был разделен на дюймы (каждый дюйм в свою очередь был разделен на восемь частей). Затем в трубку налили столько ртути, чтобы можно было заполнить ее изогнутую часть и чтобы ртуть в одном колене доходила до нижней части бумаги с делениями и до точно такой же высоты в другом колене; при этом мы трубку часто наклоняли, и воздух мог свободно проходить мимо ртути из одного колена в другое (подчеркиваю, на это мы обращали особое внимание), чтобы воздух, оставшийся в конце концов в коротком колене, был разрежен так же, как окружающий воздух (иначе говоря, имел ту же плотность и давление, что и атмосферный). Сделав это, мы начали наливать в длинное колено трубки ртуть, которая своим весом заставляла воздух в коротком колене постепенно сжиматься; мы продолжали наливать ртуть до тех пор, пока воздух в коротком колене в результате сгущения не стал занимать только половину того пространства, которое он занимал ранее.


Еще от автора Эрик Роджерс
Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.


Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Неизбежность странного мира

Научно-художественная книга о физике и физиках. Эта книга — нечто вроде заметок путешественника, побывавшего в удивительной стране элементарных частиц материи, где перед ним приоткрылся странный мир неожиданных идей и представлений физики нашего века. В своих путевых заметках автор рассказал о том, что увидел. Рассказал для тех, кому еще не случалось приходить тем же маршрутом. Содержит иллюстрации.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.