Физика для любознательных. Том 1. Материя. Движение. Сила - [112]
(Примечание. Приведенная ниже задача кажется довольно глупой, но ее полезно разобрать, имея в виду изучение столкновений молекул.)
Белка массой 1/2 кг сидит на абсолютно гладкой, обледенелой, горизонтальной, плоской крыше. Человек бросает в белку камень массой 1/10 кг, камень летит горизонтально со скоростью 6 м/сек.
1) Белка хватает камень и удерживает его. Вычислите:
а) движущуюся массу до и после захвата камня;
б) количество движения до захвата камня;
в) скорость отдачи белки (вместе с ее грузом); при этом следует исходить из предположения о сохранении количества движения.
8) Белка хватает камень, моментально замечает, что это не орех, и с отвращением бросает его обратно в человека с горизонтальной скоростью 2 м/сек по отношению к земле. Вычислите скорость отдачи, которую испытывает белка.
3) Объясните, почему в вопросе 2 ответ не изменится, если белка задержит на несколько секунд камень, прежде чем бросить его обратно.
Задача 20
Человек массой 100 кг прыгает с пристани с горизонтальной скоростью 4 м/сек в шлюпку массой 50 кг (в эти 50 кг входит то количество воды, которое движется вместе с лодкой). До прыжка человека лодка покоится (фиг. 219).
Фиг. 219. К задаче 20.
а) Вычислите скорость, с которой лодка вместе с человеком отходит от пристани.
б) Какое расстояние пройдет лодка за 3 сек от того момента, когда в нее прыгнул человек, если пренебречь сопротивлением воды и воздуха?
Задача 21.
а) Мальчик массой 50 кг стоит на плоту массой 500 кг. Плот неподвижен. Он может плыть по поверхности, озера с очень малым трением. Мальчик сначала стоит неподвижно, а потом идет с постоянной скоростью 1 м/сек (по отношению к берегу) и продолжает идти в течение 20 сек. На какое расстояние переместится за это время плот?
б) Предположим, что мальчик идет вдвое быстрее в течение вдвое меньшего промежутка времени. На какое расстояние переместится плот?
в) Предположим, что мальчик идет со скоростью v м/сек в течение t сек. Масса мальчика m кг, а плота М кг. Найдите расстояние, на которое перемещается плот, выразив его через v, t, m, M.
в) Рассмотрите ответы на первые два вопроса, проанализировав третий.
Задача 22.
В настоящей главе описан метод измерения скорости полета ружейной пули (стр. 321). Вы можете сами проделать аналогичное измерение в лаборатории. Для этого потребуется движущаяся по рельсе без трения тележка, на которую положен большой деревянный брусок. Вместо фотоэлемента воспользуйтесь секундомером. Опишите измерения, которые вы стали бы проводить; покажите, как вы будете вычислять скорость пули по результатам измерений.
Задача 23
Что такое базука? Объясните, почему держащий ее человек не испытывает отдачи при стрельбе.
Задача 24
Два велосипедиста, Альберт и Бертрам, едут рядом по горизонтальному участку дороги со скоростью 3 м/сек, не работая педалями. Альберт — взрослый человек, его масса 80 кг, а Бертрам — мальчик, и его масса 50 кг. В последующих вычислениях трением можно пренебречь. Альберт дает Бертраму толчок в направлении вперед, после чего скорость Бертрама оказывается 6 м/сек.
а) Какова будет после этого скорость Альберта?
б) Бертрам замечает, что толчок длится 2 сек. Каково среднее значение силы, с которой Альберт его толкнул?
Задача 25.
Массивная металлическая болванка покоится на абсолютно гладкой поверхности стола.
1) Шар из слоновой кости массой 1 кг бросают горизонтально в болванку. Происходит лобовое столкновение, и шар отскакивает.
2) Опыт повторяют с куском глины массой 1 кг, его бросают с той же скоростью. После лобового столкновения кусок глины падает и остается неподвижным.
3) С той же скоростью бросают кусок липкой глины массой 1 кг. При лобовом столкновении глина прилипает к металлической болванке и движется вместе с ней.
а) В каком случае (случаях) металлическая болванка приобретает наибольшую скорость: в 1, 2 или 3?
б) В каком случае (случаях) металлическая болванка приобретает наименьшую скорость?
в) Объясните, как вы станете доказывать правильность ваших ответов на вопросы (а) и (б).
Задача 26
Фирма, изготовляющая пулеметы, пишет в своей рекламе: «Наш пулемет настолько эффективен, что способен держаться в воздухе под действием направленного вниз непрерывного потока выпускаемых пуль». (фиг. 220).
Фиг. 220. К задаче 26.
Воспользовавшись приведенными ниже данными и указаниями, выясните, с какой скоростью должен стрелять пулемет.
Масса пулемета 25 кг. Масса каждой стальной пули составляет 1/10 кг, скорость пули при вылете 1300 м/сек.
При взрыве пуля выталкивается вниз по стволу, и одновременно развивается равная и противоположно направленная сила отдачи, приложенная к пулемету. (Сила эта не постоянная, а прерывистая, толчок возникает каждый раз при вылете пули. Однако, если такие толчки следуют один за другим с очень большой частотой, мы можем мысленно сгладить их и получить непрерывно действующую силу. Именно этой «сглаженной» силой здесь и пользуются.)
Предположим, скорость стрельбы составляет X пуль в секунду.
а) Вычислите количество движения, уносимое пулями за промежуток времени 10 сек.
б) Вычислите силу отдачи.
Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.
Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.
«Впервые я узнал о нелокальности в начале 1990-х, будучи аспирантом, причем не от своего преподавателя квантовой механики: он не посчитал нужным даже упомянуть о ней. Роясь в местном книжном магазине, я наткнулся на только что изданную книжку «Сознательная вселенная» (The Conscious Universe), которая поразила меня заявлением о том, что «ни одно предыдущее открытие не бросало больший вызов нашему восприятию повседневной реальности», чем нелокальность. Это явление походило по вкусу на запретный плод…».
Книга М. Ивановского «Законы движения» знакомит читателей с основными законами механики и с историей их открытия. Наряду с этим в ней рассказано о жизни и деятельности великих ученых Аристотеля, Галилея и Ньютона.Книга рассчитана на школьников среднего возраста.Ввиду скоропостижной смерти автора рукопись осталась незаконченной. Работа по подготовке ее к печати была проведена Б. И. Смагиным. При этом IV, V, VI и VII главы подверглись существенной переработке. Материал этих глав исправлен и дополнен новыми разделами.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В небольшой по объему книге «Золотое правило» М. Ивановский в занимательней форме сообщает читателю интересные сведения из истории, а также из жизни великого ученого древности — Архимеда.Наряду с историческими сведениями автор, воспользовавшись удачным литературным приемом, знакомит школьников с устройством и действием целого ряда простых механизмов — ворота, лебедки, полиспаста, дифференциального ворота и др. И хотя некоторые из этих механизмов не изучаются в школьном курсе физики, они в описании автора становятся вполне понятными для учащихся VI–VII классов.М.
В книге описываются результаты экспериментов по изучению оригинального квантово-волнового метода механического воздействия на кристаллы алмаза. Проведенные эксперименты открывают новые свойства и особенности этих кристаллов, находящихся в сильнонеравновесных условиях обработки. Показана принципиальная возможность возникновения необратимых сильнонеравновесных явлений в кристаллах алмаза при формировании в их объеме волновых потоков с винтовым возмущением волнового фронта. Взаимодействие этих волновых потоков в объеме алмаза приводит как к изменению дефектно-примесной структуры алмаза, снятию внутренних напряжений, так и к формированию морфологического рельефа поверхности кристалла без непосредственного касания всей его поверхности инструментом.