Физические тела - [60]

Шрифт
Интервал

Движение молекул, «образующих вакуум», меняет свой характер, когда длина свободного пробега молекулы становится больше размеров сосуда, в котором находится газ. Тогда молекулы редко сталкиваются между собой и совершают свое путешествие прямыми зигзагами, ударяясь то об одну, то о другую стенку сосуда. Подробно о движении молекул речь пойдет в книге 2. Однако, забегая вперед, вычислим, при каком давлении это будет. Читатель знает, что в воздухе при атмосферном давлении длина пробега равна 5∙10>-6 см. Если увеличить ее в 10>7 раз, то она составит 50 см, т. е. будет заметно больше среднего по размерам сосуда. Поскольку длина пробега обратно пропорциональна плотности, а следовательно, и давлению, то давление для этого должно составлять 10>-7 атмосферного или примерно 10>-4 мм рт. ст.

Даже межпланетное пространство не является совсем пустым. Но плотность вещества в нем составляет около 5∙10>-24 г/см>3. Основная доля межпланетного вещества — атомарный водород. В настоящее время считается, что в космосе приходится по нескольку атомов водорода на 1 см>3. Если увеличить молекулу водорода до размеров горошины и поместить такую «молекулу» в Москве, то ее ближайшая «космическая соседка» окажется в Туле.


ДАВЛЕНИЕ В МИЛЛИОНЫ АТМОСФЕР

С большими давлениями, приходящимися на маленькие площадки, мы сталкиваемся каждодневно. Прикинем, например, каково давление, приходящееся на конец иглы. Положим, что кончик иглы или гвоздя имеет линейный размер 0,1 мм. Это значит, что площадь острия будет равна 0,0001 см>2. Если на такой гвоздик подействовать совсем небольшой силой — в 10 кгс, то кончик гвоздика окажет давление в 100 000 атмосфер. Немудрено, что острые предметы так легко проникают в глубь плотных тел.

Из этого примера следует, что создание больших давлений на малых площадях есть вещь вполне обычная. Совсем иначе обстоит дело, если речь идет о создании высоких давлений на большой поверхности.

Создание высоких давлений в лабораторных условиях осуществляется при помощи сильных прессов, например гидравлических (рис. 7.9). Усилие пресса передается поршеньку небольшой площади, он вталкивается в сосуд, внутри которого хотят создать высокое давление.



Таким образом можно без особого труда создать давления в несколько тысяч атмосфер. Для получения же сверхвысоких давлений опыт приходится усложнять, так как материал сосуда таких давлений не выдержит.

Природа здесь пошла нам навстречу. Оказывается, что при давлениях порядка 20 000 атмосфер металлы существенно упрочняются. Поэтому аппарат для получения сверхвысоких давлений погружают в жидкость, находящуюся под давлением порядка 30000 атмосфер. В этом случае удается создать во внутреннем сосуде (опять-таки поршнем) давления в несколько сот тысяч атмосфер. Наиболее высокое давление — 400 000 атмосфер — было получено американским физиком Бриджменом.

Интерес к получению сверхвысоких давлений совсем не праздный. При таких давлениях могут происходить явления, которые невозможно вызвать иным способом. В 1955 г. были получены искусственные алмазы. Для этого понадобилось давление в 100 000 атмосфер и вдобавок температура свыше 2000 К.

Сверхвысокие давления порядка 300 000 атмосфер на больших площадях образуются при взрывах твердых и жидких взрывчатых веществ — нитроглицерина, тротила и пр.

Несравненно более высокие давления, достигающие 10>13 атмосфер, возникают внутри атомной бомбы при взрыве.

Давления при взрыве существуют очень короткое время. Постоянные высокие давления имеются в глубинах небесных тел, в том числе, конечно, и в глубине Земли. Давление в центре земного шара равно примерно 3 миллионам атмосфер.

* * *


* * *




Еще от автора Александр Исаакович Китайгородский
Что такое теория относительности

Современная физика без теории относительности почти так же невозможна, как без представления об атомах и молекулах. Эта теория принадлежит к числу «трудных» для понимания достаточно широкого круга читателей. Вот почему особенно ценно, что основные положения и идеи теории относительности читатель получает «из первых рук» — авторы этой книги академик, лауреат Ленинской и Нобелевской премий, ныне покойный Л. Д. Ландау и профессор Ю. Б. Румер.Три материала, включенные в послесловие, воссоздают образ Ландау — замечательного ученого и человека.


Электроны

«Физика для всех» Л. Д. Ландау и А. И. Китайгородского выпущена в 1978 г. четвертым изданием в виде двух отдельных книг: «Физические тела» (книга 1) и «Молекулы» (книга 2). Книга 3 «Электроны», написанная А. И. Китайгородским, выходит впервые и является продолжением «Физики для всех». В этой книге пойдет речь о явлениях, где на первый план выходит следующий уровень строения вещества — электрическое строение атомов и молекул. В основе электротехники и радиотехники, без которых немыслимо существование современной цивилизации, лежат законы движения и взаимодействия электрических частиц и в первую очередь электронов — квантов электричества. Электрический ток, магнетизм и электромагнитное поле — вот главные темы этой книги.


Молекулы

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Проблема № 2

Статья о явлении сверхпроводимости из журнала «Техника – молодежи» № 11, 1975.


Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики.Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики.Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.


Рекомендуем почитать
Охотники за частицами

В последние годы вышла на передний рубеж науки и начала бурно развиваться физика элементарных частиц. Она ставит перед собой самую дерзновенную цель — познать наиболее сокровенные тайны природы, познать законы, управляющие миром, который не увидишь ни в какие микроскопы. Одни из этих законов уже познаны. Другие — наиболее таинственные, а потому и самые важные — ждут своего открытия. Эти открытия неразрывно связаны с поиском новых частиц. В последние годы «охота» за частицами приняла неведомый до сих пор размах.


Белые карлики. Будущее Вселенной

Перед вами первая книга на русском языке, почти целиком посвященная остывающим реликтам звезд, известным под именем белых карликов. А ведь судьба превратиться в таких обитателей космического пространства ждет почти все звезды, кроме самых массивных. История открытия белых карликов и их изучение насчитывает десятилетия, и автор не только подробно описывает их физическую природу и во многом парадоксальные свойства, но и рассказывает об ученых, посвятивших жизнь этим объектам Большого космоса. Кроме информации о сверхновых звездах и космологических проблемах, связанных с белыми карликами, читатель познакомится с историей радиоастрономии, узнает об открытии пульсаров и квазаров, о первом детектировании, происхождении и свойствах микроволнового реликтового излучения и его роли в исследовании Вселенной.


Атомный проект. Жизнь за «железным занавесом»

Ученик великого Э. Ферми, сотрудник Ф. Жолио-Кюри, почетный член Итальянской академии деи Линчей Бруно Понтекорво родился в Италии, работал во Франции, США, Канаде, Англии, а большую часть своей жизни прожил в России. Бруно Понтекорво известен как один из ведущих физиков эпохи «холодной войны». В то время, как главы государств мечтали о мировом господстве, которое им подарит ядерное оружие, лучшие ученые всего мира боролись за «ядерное равновесие» и всеми возможными способами старались не разрывать прочные научные связи, помогавшие двигать науку вперед.


Новый физический фейерверк

Эта книга поможет вам понять, как устроен окружающий мир и чем занимается физика как наука. Легким и неформальным языком она расскажет о физических законах и явлениях, с которыми мы сталкиваемся в повседневной жизни.


Складки на ткани пространства-времени

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы.


Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Фотоны и ядра

В заключительной из четырех книг «Физика для всех» изложены основные сведения, специфичные для электромагнитных волн, проблема теплового излучения, учение о спектрах, приведены примеры наиболее распространенных лазеров, много внимания уделено ядерной физике. Отдельные разделы посвящены обобщению механики на случай быстрых движений (специальная теория относительности) и движения малых частиц (волновая механика). Для широкого круга читателей, проявляющих интерес к данной науке.