Физические тела - [59]

Шрифт
Интервал

Потеря веса в воздухе невелика, пока речь идет о небольших телах. Однако взвешивая кусок размером с комнату, мы «потеряли» бы несколько десятков килограммов. При точном взвешивании поправка на потерю веса тел больших размеров в воздухе должна учитываться.

Архимедова сила в воздухе позволяет строить воздушные шары, аэростаты и дирижабли разных видов. Для этого нужно иметь газ легче воздуха.

Если шарик объемом 1 м>3 наполнить водородом, вес 1 м>3 которого равен 0,09 кгс, то подъемная сила — разность архимедовой силы и тяжести газа — будет равна:

1,29 кгс — 0,09 кгс = 1,20 кгс,

1,29 кг/м>3 — плотность воздуха.

Значит, к такому шару можно подвесить около килограмма груза, и это не помешает ему полететь за облака.

Ясно, что при относительно небольших объемах — в несколько сот кубических метров — водородные шары способны поднять в воздух значительный груз.

Серьезный недостаток водородных аэростатов — горючесть водорода. Вместе с воздухом водород образует взрывчатую смесь. В истории создания аэростатов отмечены трагические случаи.

Поэтому когда был найден гелий, им стали заполнять воздушные шары. Гелий в два раза тяжелее водорода, и подъемная сила наполненного им шара меньше. Однако будет ли это различие существенным? Подъемная сила шара в 1 м>3, наполненного гелием, найдется как разность 1,29 кгс — 0,18 кгс = 1,11 кгс. Подъемная сила уменьшилась всего лишь на 8 %. В то же время достоинства гелия очевидны.

Аэростат был первым аппаратом, при помощи которого люди поднялись в воздух. Аэростаты с герметически закрытой гондолой для исследования верхних слоев атмосферы применяются до настоящего времени. Они называются стратостатами. Стратостаты поднимались на высоту больше 20 км.

В настоящее время широко применяются воздушные шары, снабженные различной измерительной аппаратурой и оповещающие о результатах своих измерений по радио (рис. 7.8). Такие радиозонды несут на себе миниатюрный радиопередатчик с батарейками, который сообщает условными сигналами о влажности, температуре и давлении атмосферы на разных высотах.



Можно отправить неуправляемый аэростат в далекое путешествие и довольно точно определить, где он приземлится. Для этого надо, чтобы аэростат поднялся на большую высоту, порядка 20–30 км. На этих высотах воздушные течения очень устойчивы, и путь аэростата может быть рассчитан заранее достаточно хорошо. При необходимости можно автоматически менять подъемную силу аэростата, выпуская газ или сбрасывая балласт.

Раньше для воздушных полетов применяли аэростаты, на которых был установлен мотор с винтом. Таким аэростатам — их называют дирижаблями (что значит «управляемые») — придавали обтекаемую форму. Дирижабли не выдержали конкуренции с самолетами; по сравнению даже с самолетами 30-летней давности они громоздки, неудобны в управлении, медленно движутся, имеют «низкий потолок». Впрочем есть мнение, что для грузовых перевозок дирижабли могут оказаться выгодными.


ПРЕДЕЛЬНО МАЛЫЕ ДАВЛЕНИЯ. ВАКУУМ

Пустой в техническом смысле сосуд содержит еще огромное число молекул.

Во многих физических приборах молекулы газа являются существенной помехой. Радиолампы, рентгеновские трубки, ускорители элементарных частиц — все эти приборы нуждаются в вакууме[8], т. е. в свободном от молекул газа пространстве. Вакуум должен быть и в обычной электрической лампочке. Если в лампочку попадет воздух, нить лампы окислится и перегорит немедленно.

В лучших вакуумных приборах имеется вакуум порядка 10>-8 мм рт. ст. Казалось бы, совершенно ничтожное давление: на стомиллионную долю миллиметра сдвинулся бы уровень ртути в манометре при изменении давления на такую величину.

Однако при этом мизерном давлении в 1 см>3 находится еще несколько сот миллионов молекул.

С этим вакуумом интересно сравнить пустоту межзвездного пространства — там на несколько кубических сантиметров приходится в среднем одна элементарная частица вещества.

Для получения вакуума применяются специальные насосы. Обычный насос, удаляющий газ путем движения поршня, может создать вакуум не более 0,01 мм рт. ст. Хороший, или, как говорят, высокий, вакуум можно получить при помощи так называемых диффузионных насосов — ртутных или масляных, в которых молекулы газа захватываются струей ртутного или масляного пара.

Ртутные насосы, носящие имя их изобретателя Лэнгмюра, начинают работать лишь после предварительной откачки до давлений около 0,1 мм рт. ст. такое предварительное разрежение называют форвакуумом.

Принцип действия заключается в следующем. Небольшой стеклянный объем сообщается с сосудом со ртутью, откачиваемым пространством и форвакуумным насосом. Ртуть подогревается, и форвакуумный насос увлекает ее пары. По дороге ртутные пары захватывают молекулы газа и доставляют их к форвакуумному насосу. Атомы ртути конденсируются в жидкость (предусмотрено охлаждение проточной водой), которая стекает в тот сосуд, откуда ртуть начала путешествие.

Достигаемый в лабораторных условиях вакуум, как мы сказали только что, — это еще далеко не пустота в абсолютном значении слова. Вакуум — это сильно разреженный газ. Свойства этого газа могут существенно отличаться от свойств обычного газа.


Еще от автора Александр Исаакович Китайгородский
Что такое теория относительности

Современная физика без теории относительности почти так же невозможна, как без представления об атомах и молекулах. Эта теория принадлежит к числу «трудных» для понимания достаточно широкого круга читателей. Вот почему особенно ценно, что основные положения и идеи теории относительности читатель получает «из первых рук» — авторы этой книги академик, лауреат Ленинской и Нобелевской премий, ныне покойный Л. Д. Ландау и профессор Ю. Б. Румер.Три материала, включенные в послесловие, воссоздают образ Ландау — замечательного ученого и человека.


Электроны

«Физика для всех» Л. Д. Ландау и А. И. Китайгородского выпущена в 1978 г. четвертым изданием в виде двух отдельных книг: «Физические тела» (книга 1) и «Молекулы» (книга 2). Книга 3 «Электроны», написанная А. И. Китайгородским, выходит впервые и является продолжением «Физики для всех». В этой книге пойдет речь о явлениях, где на первый план выходит следующий уровень строения вещества — электрическое строение атомов и молекул. В основе электротехники и радиотехники, без которых немыслимо существование современной цивилизации, лежат законы движения и взаимодействия электрических частиц и в первую очередь электронов — квантов электричества. Электрический ток, магнетизм и электромагнитное поле — вот главные темы этой книги.


Молекулы

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Проблема № 2

Статья о явлении сверхпроводимости из журнала «Техника – молодежи» № 11, 1975.


Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики.Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики.Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.


Рекомендуем почитать
Охотники за частицами

В последние годы вышла на передний рубеж науки и начала бурно развиваться физика элементарных частиц. Она ставит перед собой самую дерзновенную цель — познать наиболее сокровенные тайны природы, познать законы, управляющие миром, который не увидишь ни в какие микроскопы. Одни из этих законов уже познаны. Другие — наиболее таинственные, а потому и самые важные — ждут своего открытия. Эти открытия неразрывно связаны с поиском новых частиц. В последние годы «охота» за частицами приняла неведомый до сих пор размах.


Белые карлики. Будущее Вселенной

Перед вами первая книга на русском языке, почти целиком посвященная остывающим реликтам звезд, известным под именем белых карликов. А ведь судьба превратиться в таких обитателей космического пространства ждет почти все звезды, кроме самых массивных. История открытия белых карликов и их изучение насчитывает десятилетия, и автор не только подробно описывает их физическую природу и во многом парадоксальные свойства, но и рассказывает об ученых, посвятивших жизнь этим объектам Большого космоса. Кроме информации о сверхновых звездах и космологических проблемах, связанных с белыми карликами, читатель познакомится с историей радиоастрономии, узнает об открытии пульсаров и квазаров, о первом детектировании, происхождении и свойствах микроволнового реликтового излучения и его роли в исследовании Вселенной.


Атомный проект. Жизнь за «железным занавесом»

Ученик великого Э. Ферми, сотрудник Ф. Жолио-Кюри, почетный член Итальянской академии деи Линчей Бруно Понтекорво родился в Италии, работал во Франции, США, Канаде, Англии, а большую часть своей жизни прожил в России. Бруно Понтекорво известен как один из ведущих физиков эпохи «холодной войны». В то время, как главы государств мечтали о мировом господстве, которое им подарит ядерное оружие, лучшие ученые всего мира боролись за «ядерное равновесие» и всеми возможными способами старались не разрывать прочные научные связи, помогавшие двигать науку вперед.


Новый физический фейерверк

Эта книга поможет вам понять, как устроен окружающий мир и чем занимается физика как наука. Легким и неформальным языком она расскажет о физических законах и явлениях, с которыми мы сталкиваемся в повседневной жизни.


Складки на ткани пространства-времени

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы.


Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Фотоны и ядра

В заключительной из четырех книг «Физика для всех» изложены основные сведения, специфичные для электромагнитных волн, проблема теплового излучения, учение о спектрах, приведены примеры наиболее распространенных лазеров, много внимания уделено ядерной физике. Отдельные разделы посвящены обобщению механики на случай быстрых движений (специальная теория относительности) и движения малых частиц (волновая механика). Для широкого круга читателей, проявляющих интерес к данной науке.