Физические тела - [41]

Шрифт
Интервал



Мы сказали, что для устойчивости тела приложенная к нему сила должна пройти через площадь опоры. Но площадь опоры, нужная для равновесия, не всегда соответствует фактической площади опоры. На рис. 5.11 изображено тело, площадь опоры которого имеет форму полумесяца. Легко сообразить, что устойчивость тела не изменится, если полумесяц дополнить до сплошного полукруга. Таким образом, площадь опоры, определяющая условие равновесия, может быть больше фактической.



Чтобы найти опорную площадь для изображенного на рис. 5.12 треножника, надо его концы соединить отрезками прямых.



Почему так трудно ходить по канату? Потому, что площадь опоры резко уменьшается. Ходить по канату нелегко, и не даром награждают аплодисментами искусного канатоходца. Однако иногда зрители впадают в ошибку и признают за вершину искусства хитрые трюки, облегчающие задачу. Артист берет сильно изогнутое коромысло с двумя ведрами воды; ведра оказываются на уровне каната. С серьезным лицом, при замолкшем оркестре, артист совершает переход по канату. Как усложнен трюк, думает неопытный зритель. На самом же деле артист облегчил свою задачу, понизив центр тяжести.


ЦЕНТР ИНЕРЦИИ

Вполне законно задать вопрос: где находится центр тяжести группы тел? Если на плоту много людей, то от места нахождения их общего центра тяжести (вместе с плотом) будет зависеть устойчивость плота.

Смысл понятия остается тем же. Центр тяжести есть точка приложения суммы сил тяжести всех тел рассматриваемой группы.

Для двух тел результат подсчета нам известен. Если два тела весом F>1 и F>2 находятся на расстоянии х, то центр тяжести находится на расстоянии х>1 от первого и х>2 от второго тела, причем

x>1 + x>2 = x и F>1/F>2 = x>2/x>1.

Так как вес может быть представлен как произведение mg, то центр тяжести пары тел удовлетворяет условию

m>1x>1 = m>2x>2

т. е. лежит в точке, которая делит расстояние между массами на отрезки, обратно пропорциональные массам.

Вспомним теперь стрельбу из установленного на платформе орудия. Импульсы орудия и снаряда равны и направлены в разные стороны. Имеют место равенства:

m>1v>1 = m>2v>2 или v>2/v>1 = m>1/m>2

причем отношение скоростей сохраняет эго значение в течение всего времени взаимодействия. Во время движения, возникшего благодаря отдаче, орудие и снаряд смещаются по отношению к начальному положению на расстояния х>1 и х>2 в разные стороны. Расстояния х>1 и х>2 — пути, проходимые обоими телами, — растут, но при неизменном отношении скоростей величины х>1 и х>2 будут также все время находиться в том же отношении:

x>2/x>1 = m>1/m>2 или x>1m>1 = x>2m>2

Здесь х>1 и х>2 есть расстояния орудия и снаряда от первоначальной точки их нахождения. Сравнивая эту формулу с формулой, определяющей положение центра тяжести, мы видим их полную тождественность. Отсюда непосредственно следует, что центр тяжести снаряда и орудия все время после выстрела остается в первоначальной точке их нахождения.

Другими словами, мы пришли к очень интересному результату — центр тяжести орудия и снаряда после выстрела продолжает покоиться.

Такой вывод верен всегда: если центр тяжести двух тел первоначально покоился, то их взаимодействие — какой бы характер оно ни носило — не может изменить соложения центра тяжести. Именно поэтому нельзя поднять самого себя за волосы или подтянуться к Луне методом французского писателя Сирано де Бержерака, предложившего (конечно, шутя) для этой цели взять в руки кусок железа и подбрасывать вверх магнит, который притягивал бы это железо.

Покоящийся центр тяжести с точки зрения другой инерциальной системы равномерно движется. Значит, центр тяжести либо покоится, либо движется равномерно и прямолинейно.

Сказанное о центре тяжести двух тел верно и для группы многих тел. Конечно, для изолированной группы тел, — мы это оговариваем всегда, когда применяется закон сохранения импульса.

Значит, у всякой группы взаимодействующих тел есть такая точка, которая покоится или движется равномерно, и эта точка есть их центр тяжести.

Желая подчеркнуть новое свойство этой точки, ей дают еще одно название: центр инерции. Ведь, скажем, о тяжести Солнечной системы (а значит, и о центре тяжести) может идти речь лишь в условном смысле.

Как бы ни двигались тела, образующие замкнутую группу, центр инерции (тяжести) будет покоиться или в иной системе отсчета двигаться по инерции.


МОМЕНТ ИМПУЛЬСА

Сейчас мы познакомимся еще с одним механическим понятием, которое позволяет сформулировать новый для нас важный закон движения.

Это понятие называется моментом импульса, или моментом количества движения. Уже названия подсказывают, что речь идет о величине, чем-то похожей на момент силы.

Момент импульса, так же как и момент силы, требует указания точки, по отношению к которой он определяется. Чтобы определить момент импульса относительно какой-либо точки, надо построить вектор импульса и опустить из точки перпендикуляр на его направление. Произведение импульса mv на плечо d и есть момент импульса, который мы будем обозначать буквой N:

N = mvd.

Если тело движется свободно, то его скорость не меняется; остается неизменным и плечо по отношению к любой точке, так как движение происходит по прямой линии. Значит, и момент импульса остается при таком движении неизменным.


Еще от автора Александр Исаакович Китайгородский
Что такое теория относительности

Современная физика без теории относительности почти так же невозможна, как без представления об атомах и молекулах. Эта теория принадлежит к числу «трудных» для понимания достаточно широкого круга читателей. Вот почему особенно ценно, что основные положения и идеи теории относительности читатель получает «из первых рук» — авторы этой книги академик, лауреат Ленинской и Нобелевской премий, ныне покойный Л. Д. Ландау и профессор Ю. Б. Румер.Три материала, включенные в послесловие, воссоздают образ Ландау — замечательного ученого и человека.


Электроны

«Физика для всех» Л. Д. Ландау и А. И. Китайгородского выпущена в 1978 г. четвертым изданием в виде двух отдельных книг: «Физические тела» (книга 1) и «Молекулы» (книга 2). Книга 3 «Электроны», написанная А. И. Китайгородским, выходит впервые и является продолжением «Физики для всех». В этой книге пойдет речь о явлениях, где на первый план выходит следующий уровень строения вещества — электрическое строение атомов и молекул. В основе электротехники и радиотехники, без которых немыслимо существование современной цивилизации, лежат законы движения и взаимодействия электрических частиц и в первую очередь электронов — квантов электричества. Электрический ток, магнетизм и электромагнитное поле — вот главные темы этой книги.


Молекулы

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Проблема № 2

Статья о явлении сверхпроводимости из журнала «Техника – молодежи» № 11, 1975.


Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики.Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики.Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.


Рекомендуем почитать
Охотники за частицами

В последние годы вышла на передний рубеж науки и начала бурно развиваться физика элементарных частиц. Она ставит перед собой самую дерзновенную цель — познать наиболее сокровенные тайны природы, познать законы, управляющие миром, который не увидишь ни в какие микроскопы. Одни из этих законов уже познаны. Другие — наиболее таинственные, а потому и самые важные — ждут своего открытия. Эти открытия неразрывно связаны с поиском новых частиц. В последние годы «охота» за частицами приняла неведомый до сих пор размах.


Белые карлики. Будущее Вселенной

Перед вами первая книга на русском языке, почти целиком посвященная остывающим реликтам звезд, известным под именем белых карликов. А ведь судьба превратиться в таких обитателей космического пространства ждет почти все звезды, кроме самых массивных. История открытия белых карликов и их изучение насчитывает десятилетия, и автор не только подробно описывает их физическую природу и во многом парадоксальные свойства, но и рассказывает об ученых, посвятивших жизнь этим объектам Большого космоса. Кроме информации о сверхновых звездах и космологических проблемах, связанных с белыми карликами, читатель познакомится с историей радиоастрономии, узнает об открытии пульсаров и квазаров, о первом детектировании, происхождении и свойствах микроволнового реликтового излучения и его роли в исследовании Вселенной.


Атомный проект. Жизнь за «железным занавесом»

Ученик великого Э. Ферми, сотрудник Ф. Жолио-Кюри, почетный член Итальянской академии деи Линчей Бруно Понтекорво родился в Италии, работал во Франции, США, Канаде, Англии, а большую часть своей жизни прожил в России. Бруно Понтекорво известен как один из ведущих физиков эпохи «холодной войны». В то время, как главы государств мечтали о мировом господстве, которое им подарит ядерное оружие, лучшие ученые всего мира боролись за «ядерное равновесие» и всеми возможными способами старались не разрывать прочные научные связи, помогавшие двигать науку вперед.


Новый физический фейерверк

Эта книга поможет вам понять, как устроен окружающий мир и чем занимается физика как наука. Легким и неформальным языком она расскажет о физических законах и явлениях, с которыми мы сталкиваемся в повседневной жизни.


Складки на ткани пространства-времени

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы.


Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Фотоны и ядра

В заключительной из четырех книг «Физика для всех» изложены основные сведения, специфичные для электромагнитных волн, проблема теплового излучения, учение о спектрах, приведены примеры наиболее распространенных лазеров, много внимания уделено ядерной физике. Отдельные разделы посвящены обобщению механики на случай быстрых движений (специальная теория относительности) и движения малых частиц (волновая механика). Для широкого круга читателей, проявляющих интерес к данной науке.