Философы Древней Греции - [13]

Шрифт
Интервал

Пифагорейцы обнаружили, что могут думать по тому же методу и о формах. Вместо того чтобы думать о конкретных треугольных участках земли, они могли думать о треуголъности, о любом треугольнике или любом прямоугольном треугольнике>6. Сегодня нам, поскольку мы привыкли к чисто отвлеченным математическим понятиям и к мыслительной операции обобщения, трудно оценить по достоинству новизну этого вклада пифагорейцев в науку. И, правду говоря, некоторые стороны их математики поражают нас своей странностью. Во-первых, значительная часть этой новой математики не была чистой, поскольку сильно зависела от рисунков и от воображения. Числа у пифагорейцев имели форму и даже были личностями. Как понятие материи у философов милетской школы, понятие числа должно было пройти путь развития от интуиции до постулата (историки математики часто это скрывают: сообщают только о некоторых теоремах и идеях – тех, которые математически чисты, – и пренебрегают всем остальным). Но возможно, еще поразительнее для нас тот огромный почти религиозный восторг, с которым пифагорейцы относились к математике. Новое понимание формы озарило умы своих древних первооткрывателей с силой, равной силе мистического откровения.

Некоторое представление о степени развития математики в эпоху от Пифагора до Платона мы можем получить из текстов по геометрии, изложенных в книгах 1–5 «Элементов» Евклида, а эти книги – новая редакция более ранних пифагорейских трактатов по геометрии>7. Кроме того, получить ответ нам помогают рассказы и некоторые теоремы. «Теорема Пифагора», предположительно открытая самим Пифагором, породила много легенд. Аристотель сообщает, что пифагорейцы знали и давали ученикам своей школы еще в начале учебы доказательство того, что диагональ единичного квадрата несоизмерима с этой стороной. Это доказательство, которое мы применяем до сих пор, показывает, что техника построения доказательств и способность при необходимости мыслить отвлеченно у пифагорейцев достигали очень высокого уровня>8. Сообщения о том, что пифагорейцы отождествляли правильные геометрические тела с молекулами материального мира, говорят, что ученых этой школы интересовало применение математических методов к изучению твердых тел и применение математики к естественным наукам. Мы также обнаружим сообщение о «сите» – методе, позволявшем выбрать из последовательности чисел все простые числа, и своеобразные зачатки теории чисел.

Этих подсказок достаточно, чтобы стало очевидно, что речь идет действительно о качественно новом понимании формы. Теперь нам нужно рассмотреть философские последствия утверждения, что «числа – это вещи», которое обобщает эти новые представления. Может быть, мысль пифагорейцев станет яснее, если мы перефразируем эти слова и скажем «числа реальны», поскольку слово «вещи» в современном языке ассоциируется с материальными предметами, а это искажает смысл изречения. Но в каком смысле числа или формы реальны? Во-первых, они существуют независимо от наблюдателя: хотим мы того или нет, два плюс два всегда будет равно четырем, и два всегда будет четным простым числом. У них, в отличие от бесформенной или безграничной пустоты Анаксимандра, есть точные индивидуальные характеристики: каждое число является только самим собой. Числа – нечто общее для всех: они для всех наблюдателей одни и те же, в отличие от субъективных фантазий какого-либо человека или проходящих со временем впечатлений. Они системно связаны между собой. Всех этих свойств, кажется, достаточно для того, чтобы признать форму, число и соотношение чисел чем-то реальным. Но они реальны по-иному, чем материальные объекты: в отличие от них, числа не имеют ни прошлого, ни места в пространстве и существуют в мире, где нет ни движения, ни изменения. И числа видимы только уму: мы не можем коснуться их или смотреть на них, как смотрим на камень или ручей. Таким образом, перед философией возник, кроме мира физических реальностей, признанного милетцами, еще целый новый мир, который можно использовать>9. И этот мир реально имел отношение к интересам и проблемам людей, поскольку его абстрактные соотношения и фигуры давали науке инструменты для познания природы>10.

И все же у пифагорейцев, несмотря на отмечаемое иногда изящество доказательств и определений, числа были гораздо теснее связаны с воображением, чем наши сегодняшние абстрактные числа>11. Пифагорейцы представляли себе числа как «группы единиц» (монад) и считали, что «естественный» способ записи чисел – изображение их в виде групп точек, при котором у каждого числа была собственная характерная для него естественная монадная структура. Этим способом мы до сих пор изображаем числа на домино и игральных костях, а ассоциативная связь между числами и пространственными фигурами сохранилась в современных терминах «квадратные» и «кубические» числа. Фактически в течение всего Средневековья «фигурные числа» были стандартным крупнейшим разделом арифметики. Школьники заучивали теоремы о том, что, например, суммы последовательных целых чисел «треугольны», то есть составляющие их числа можно изобразить в виде треугольника (как в «тетрактисе десятки» на схеме, которая приведена ниже). Эта смесь воображения и абстракции позволяла легко ассоциировать числа с формами и предметами. Например, изображение чисел в виде группы единиц предполагало какую-то связь между единицами в арифметике и точками пифагорейской геометрии, и некоторые члены пифагорейской школы пытались построить физический мир из пространственных точек.


Рекомендуем почитать
Исторический материализм

 Из предисловия:Необходимость в книге, в которой давалось бы систематическое изложение исторического материализма, давно назрела. Такая книга нужна студентам и преподавателям высших учебных заведении, а также многочисленным кадрам советской интеллигенции, самостоятельно изучающим основы марксистско-ленинской философской науки.Предлагаемая читателю книга, написанная авторским коллективом Института философии Академии наук СССР, представляет собой попытку дать более или менее полное изложение основ исторического материализма.


Онтология трансгрессии. Г. В. Ф. Гегель и Ф. Ницше у истоков новой философской парадигмы (из истории метафизических учений)

Монография посвящена исследованию становления онтологической парадигмы трансгрессии в истории европейской и русской философии. Основное внимание в книге сосредоточено на учениях Г. В. Ф. Гегеля и Ф. Ницше как на основных источниках формирования нового типа философского мышления.Монография адресована философам, аспирантам, студентам и всем интересующимся проблемами современной онтологии.


От знания – к творчеству. Как гуманитарные науки могут изменять мир

М.Н. Эпштейн – известный филолог и философ, профессор теории культуры (университет Эмори, США). Эта книга – итог его многолетней междисциплинарной работы, в том числе как руководителя Центра гуманитарных инноваций (Даремский университет, Великобритания). Задача книги – наметить выход из кризиса гуманитарных наук, преодолеть их изоляцию в современном обществе, интегрировать в духовное и научно-техническое развитие человечества. В книге рассматриваются пути гуманитарного изобретательства, научного воображения, творческих инноваций.


Познание как произведение. Эстетический эскиз

Книга – дополненное и переработанное издание «Эстетической эпистемологии», опубликованной в 2015 году издательством Palmarium Academic Publishing (Saarbrücken) и Издательским домом «Академия» (Москва). В работе анализируются подходы к построению эстетической теории познания, проблематика соотношения эстетического и познавательного отношения к миру, рассматривается нестираемая данность эстетического в жизни познания, раскрывается, как эстетическое свойство познающего разума проявляется в кибернетике сознания и искусственного интеллекта.


Путь Карла Маркса от революционного демократа к коммунисту

Автор книги профессор Георг Менде – один из видных философов Германской Демократической Республики. «Путь Карла Маркса от революционного демократа к коммунисту» – исследование первого периода идейного развития К. Маркса (1837 – 1844 гг.).Г. Менде в своем небольшом, но ценном труде широко анализирует многие документы, раскрывающие становление К. Маркса как коммуниста, теоретика и вождя революционно-освободительного движения пролетариата.


Выдающиеся ученые о познании

Книга будет интересна всем, кто неравнодушен к мнению больших учёных о ценности Знания, о путях его расширения и качествах, необходимых первопроходцам науки. Но в первую очередь она адресована старшей школе для обучения искусству мышления на конкретных примерах. Эти примеры представляют собой адаптированные фрагменты из трудов, писем, дневниковых записей, публицистических статей учёных-классиков и учёных нашего времени, подобранные тематически. Прилагаются Словарь и иллюстрированный Указатель имён, с краткими сведениями о характерном в деятельности и личности всех упоминаемых учёных.