Фиговые листики теории относительности - [5]

Шрифт
Интервал

скорость. Нет: к изумлению релятивистов, прибор Майкельсона-Морли реагировал непосредственно на свою скорость – причём на вполне конкретную.

Далее был ещё целый ряд экспериментов, которых релятивисты называют «аналогами» эксперимента Майкельсона-Морли. В этих, с позволения сказать, «аналогах» результаты были действительно нулевые. То, что там не проявлялось орбитальное движение вокруг Солнца – это само собой. Но там не проявлялось и движение установки из-за суточного вращения Земли. Странно? Нет, не странно: оно и не могло там проявиться. Вот, например, что вытворяли Таунс с сотрудниками. Ставили пару мазеров на платформу, пучками атомов навстречу друг другу – причём, вдоль линии запад-восток. Измеряли частоту биений этой парочки. Затем поворачивали платформу на 180° и снова измеряли частоту биений. И так – много раз, на протяжении более полусуток. «Орбитальный эфирный ветер» при такой методе обнаружился бы. А «суточный» – нет, поскольку, при повороте платформы на 180°, допплеровские сдвиги частот у мазеров просто менялись ролями, и частота биений оставалась прежней. Другие специалисты ставили на платформу два инфракрасных мазера ортогонально друг другу – и давай поворачивать эту платформу туда-сюда на 90° между положениями, когда резонатор одного мазера ориентирован по линии север-юг, а резонатор другого, соответственно, по линии восток-запад. Если бы дул «эфирный ветер», он приводил бы к неодинаковым сдвигам частот у резонатора, ориентированного «вдоль ветра», и у резонатора, ориентированного «поперёк ветра»; поэтому, при тех самых поворотах платформы, частота биений мазеров соответственно изменялась бы. Размах этих изменений, соответствующих скорости 30 км/с, составил бы 3 МГц. А обнаружили – 270 кГц, да не из-за «эфирного ветра», а из-за магнитострикции, т.е. изменения длин металлических стержней резонаторов под воздействием магнитного поля Земли. Вклад же из-за суточного движения установки должен был иметь размах около 300 Гц при синфазности с «магнитным» эффектом. Ясно, что этот вклад было невозможно увидеть: как выражаются экспериментаторы, он был «погребён в шумах». Другого рода шутки получались в тех случаях, когда измерения проводились при неизменной ориентации всех элементов установки по отношению к земной поверхности. Таких экспериментов было множество – исследования ионного стандарта частоты, двухфотонная спектроскопия в атомном пучке, сличения частот ортогонально расположенных лазеров… Всё это делалось с сумасшедшей точностью. Но что толку от этой сумасшедшей точности, если проявление суточного «эфирного ветра» было неизменным на протяжении всего интервала измерений? Как здесь увидеть, что это проявление вообще существует? Увидеть эффект можно тогда, когда его проявление хоть как-то изменяется. А если нет – то, как ни всматривайтесь, эффекта всё равно не увидите!

А вот Брилет и Холл (1979 г.) исхитрились сличать частоты двух лазеров, один из которых был установлен на медленно вращающейся платформе. Это совсем другое дело! Эффект, конечно же, обнаружился. Соответствующая ему скорость «эфирного ветра» отличалась от линейной скорости суточного вращения на широте лаборатории менее чем на шесть процентов! Это – потрясающий результат. Он подтверждает, что если устранить технические и методологические «косяки»… в общем, если подойти к вопросу умеючи, то вполне реально детектировать свою скорость автономно – без оглядки на звёзды или на искусственные спутники Земли. Причём, наземные приборы, которые на такое способны, исправно игнорируют своё орбитальное движение вокруг Солнца, но не менее исправно реагируют на своё движение из-за суточного вращения Земли. Всё в согласии с концепцией истинных-однозначных скоростей! Ведь в пределах сферы тяготения Земли, истинные-однозначные скорости физических объектов – это как раз их скорости в геоцентрической невращающейся системе отсчёта. Покоящийся на поверхности Земли прибор, способный автономно детектировать свою истинную-однозначную скорость, отреагирует именно на линейную скорость своего суточного обращения вокруг земной оси. А от того, что у Земли есть линейная скорость орбитального движения, этому прибору не будет ни жарко, ни холодно. «Почему же, - недоумевают релятивисты, - на большую скорость прибор не реагирует, а на маленькую – реагирует?» Да ёлки-палки! Объясняем же русским языком: истинная-однозначная скорость у прибора одна. Если она маленькая, то прибор только на неё, на маленькую, и реагирует. И не надо реакции наземных приборов – на своё движение в геоцентрической системе отсчёта – называть паразитными эффектами. Не надо судить об этих эффектах по себе!

Понятно, что релятивистам страшно не нравится факт автономного детектирования истинной-однозначной скорости прибора. Ведь этим фактом сразу же сживается со света принцип относительности, он же первый постулат СТО. Эйнштейн сформулировал его так: «Законы, по которым изменяются состояния физических систем, не зависят от того, к которой из двух координатных систем, движущихся относительно друг друга равномерно и прямолинейно, эти изменения состояний относятся». Могут возразить: почему же он сживается со света – он сформулирован так туманно, что непонятно, о чём тут вообще речь. Позвольте, позвольте! Несколько поколений толкователей потрудились на славу и пришли к согласию в том, что, в переводе на общепонятный язык, принцип относительности означает следующее: «Никакими физическими экспериментами внутри лаборатории обнаружить её прямолинейное и равномерное движение невозможно». А, оказывается – возможно! Хорошо ещё, что остаётся справедлив второй постулат: «Каждый луч света движется в «покоящейся» системе координат с определённой скоростью [


Еще от автора О Х Деревенский
История физики, изложенная курам на смех

Вся история физики, от начала времен и до наших дней, изложенная честно и беспристрастно. Естественно, как честный человек, описывая современное состояние предмета, автор приходит к вполне очевидному для наших современников (даже совершенно не знающих физики!) выводу:"Когда я слышу, что Галилей заложил основы научного физического метода, я понимаю: мелко же плавал этот Галилей! Куда ему до титанов, которые заложили и перезаложили всю физику с потрохами. Так оно всегда и выходит, когда любителей вытесняют профессионалы.".


Бирюльки и фитюльки всемирного тяготения

Помните, как в школе мы все замирали словно кролики перед удавом перед законом про "всемирное тяготение" всех масс в мире друг к другу. Нам рисовали на доске двухэтажную формулу, а вместо её доказательства рассказывали анекдот про яблоко, поразившее в темечко спящего автора, который проснулся от удара и тут же этот самый закон записал. Особо сомневающимся в факте взаимного тяготения масс предлагалось для доказательства спрыгнуть откуда-нибудь повыше и посмотреть, что будет.Позже, в институте, доказательство этого закона тоже как-то проскакивали на большой скорости, без ненужных подробностей.И, как оказалось, далеко не случайно.


Фокусы-покусы квантовой теории

Квантовая теория приводит в трепет даже многих физиков. Ох, как они горды тем, что всякие там доморощенные опровергатели основ суются со своими умничаниями в самые разные области – и в классическую механику, и в электродинамику, и, в особенности, в теорию относительности – но никто не покушается на квантовую теорию! «Даже этим олухам ясно, - веселятся академики, - что без квантовой теории люди бы до сих пор жили в пещерах и бегали с каменными топорами!» Без квантовой теории, мол, не было бы лазеров – а без лазеров, девочки и мальчики, не было бы у вас таких балдёжных дискотек! Без квантовой теории, мол, не было бы понимания того, как движутся электроны в металлах и полупроводниках – а без этого понимания, девочки и мальчики, не было бы у вас ни компьютеров, ни мобильных телефончиков!  Откуда девочкам и мальчикам знать, что всё это – шутки? Лазеры, компьютеры, мобильные телефончики – своим появлением они вовсе не обязаны квантовой теории.


Догонялки с теплотой

В нашей науке достигнут максимум её независимости не только от общества, но и от здравого смысла. За наш счет ученые занимаются тем, чем сами хотят. Они сами отчитываются перед собой и присваивают друг другу оплачиваемые нами впоследствии звания. Они сейчас борются за эксклюзивное право исключительно самостоятельно определять, что есть наука, а что нет. Более того, они желают даже на государственном уровне запрещать другим людям заниматься (даже за собственный счет) тем, что тем интересно, но что противоречит текущим научным фантазиям (пардон, "фундаментальным теориям").Если в обычной жизни обнаруживается чья-то ошибка, её просто исправляют.


Рекомендуем почитать
Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Климатическая наука: наблюдения и модели

Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.