Фиговые листики теории относительности - [16]

Шрифт
Интервал

Думаете, этим всё и закончилось? Ах, если бы!.. Была ведь ещё одна методика измерения тормозных потерь – в фотоэмульсиях. Здесь частица тоже теряет энергию на ионизацию атомов, причём каждый получившийся ион формирует фотографическое зёрнышко. И эти зёрнышки различимы под микроскопом! Значит, число ионизаций, произведённых частицей, можно пересчитать! А затем умножить это число на энергию одной ионизации – вот и получится исходная энергия частицы! Да уж… на словах-то всё просто. А на деле получались такие же подлости, как и в пропорциональных счётчиках. В «нерелятивистской области» число зёрнышек, умноженное на энергию одной ионизации, великолепно соответствовало результатам «магнитной» методики. А в «релятивистской области» число зёрнышек выходило на постоянную величину и дальше не росло. И, опять же, использовались различные составы фотоэмульсий. И, опять же, все они говорили одно и то же. А именно: если подходить к вопросу незамутнённым методом пристального вглядывания, то никакого релятивистского роста энергии не видать.

И опять пришлось релятивистам отдуваться – гипотезы выдвигать. Насчёт того, что быстрая частица теряет энергию в фотоэмульсиях не только на ионизацию, но и на другие фокусы, которые незаметны без специальной подготовки. И что эти фокусы в точности «съедают» ожидаемый релятивистский рост энергии. Мол, таковы законы природы, ничего не поделаешь. Если б не они, то релятивистский рост был бы как на блюдечке!

Вообще, странная складывалась ситуация. Целым толпам экспериментаторов было по-человечески обидно. Хорошо было тем, которые носились с «магнитной» методикой, как с писаной торбой, да всем в нос тыкали – насчёт того, что релятивистский рост должен быть везде. А каково было остальным, которые работали с другими методиками? Они и рады были бы внести свой скромный вкладец в мировую науку – подтвердить наличие релятивистского роста. Да не тут-то было! Обязательно вылезали какие-нибудь «законы природы», которые всё портили. Ну, разве это жизнь? А всех тоскливее было тем, кто занимался измерениями импульса отдачи у атома, из ядра которого выстреливался релятивистский электрон при бета-распаде. Здесь устраивалась как бы «очная ставка» двум методикам: импульс отдачи атома измерялся по «немагнитной» методике, а импульс выстреливаемого электрона – по «магнитной», во всей своей красе. И вот, закон сохранения импульса нарушался: импульс электрона получался чудовищно больше, чем импульс отдачи атома. Теперь, внимание: не потеряйте нить рассуждений. Импульс электрона измерялся по непогрешимой «магнитной» методике – значит, правильно измерялся именно он. Следовательно, импульс отдачи у атома оказывался чудовищно меньше, чем требовалось по закону сохранения импульса. Куда же тогда пропадала эта недостающая часть? Пялились исследователи на фотопластинки, вертели ими так и сяк… Можно было поступить совсем просто: отбросить иллюзорные релятивистские завышения импульсов у электронов, и тогда их результирующие импульсы становились бы равными импульсам отдачи! Но – что вы! это было бы святотатство! Уж лучше было сидеть и страдать молча… Ферми смотрел-смотрел на эти страдания, и его доброе сердце дрогнуло. «Ладно, - подмигнул он, - вы только не плачьте! Вот что мы сделаем: введём новую частицу. И припишем ей всё, что требуется. Вам нужен импульс? – у ней он есть!» - «Как?! – просияли от радости экспериментаторы. – Так просто? Впрочем, погодите-погодите. Мы же такую возможность исследовали. Никаких следов третьей частицы при бета-распаде не обнаруживается!» - «Ну, и что такого? Если следов не обнаруживается, значит, эта частица их не оставляет! Я же говорю – припишем всё, что требуется!» - «Да, но… странно как-то. Трудно поверить! Частица… импульс имеет… и – никаких следов… Как же её поймать?» - «А зачем обязательно – поймать? Сам по себе процесс ловли – разве он удовольствия не доставляет? Так ловите, до скончания века, и наслаждайтесь! На зависть окружающим!» - «А, ведь, действительно! Позвольте полюбопытствовать, а как предлагается назвать эту неуловимую прелесть?» - «Да придумаем хохмочку какую-нибудь… Вот: назовём эту прелесть нейтрончиком!»

Слово «нейтрончик» на родном итальянском языке Ферми звучит как «нейтрино». Ну, так и повелось… А карьеру эта «неуловимая прелесть» сделала на редкость головокружительную. Шутка ли: её быстренько перевели в разряд фундаментальных частиц – которых всего-то, считается, четыре. Из грязи – да в князи! В физике появился новый раздел – «Физика нейтрино». Понастроили грандиозных «детекторов». Думаете, эти детекторы реагируют на нейтрино? Ну, что вы! Они реагируют на продукты реакций, которые, как полагают теоретики, может инициировать только нейтрино – одно на триллион, да и то в урожайный год. С этими «детекторами» получается как с заборами, которые строят известным методом: пишут неприличное слово из трёх букв и прибивают к нему доски. Вот на чём держится закон сохранения релятивистского импульса!

Все эти истории – с пропорциональными счётчиками, с фотоэмульсиями, с выдуманным нейтрино – очень поучительны. Они наглядно показывают, что «любое высказывание может во что бы то ни стало сохранять свою истинность, если сделать достаточно радикальную перестройку в каком-то ином месте системы». Но даже такой приёмчик, применительно к релятивистскому росту энергии-импульса, не всегда срабатывает. Потому что иногда на опыте творится такая хренотень, что непонятно – в каком же месте системы делать радикальную перестройку. Вот, например, известно немало реакций ядерных превращений с очень низким энергетическим порогом – всего в 2-3 МэВ. Это значит: шваркни по исходному ядру чем угодно – лишь бы энергия возбуждения ядра оказалась не меньше, чем пороговая – и реакция произойдёт. Иметь энергию в 2-3 МэВ не возбраняется ни гамма-кванту, ни протону, ни нейтрону: если шваркнуть по ядру кем-нибудь из них, то реакция происходит. А вот электрону, похоже, иметь такую энергию возбраняется. Шваркали уже, до посинения – и убедились в том, что электроны ядерных превращений не инициируют. И возникает вопрос: а почему, собственно? Если, как нас уверяют, у электронов бывают энергии, исчисляемые ГэВами, то что мешает электронам инициировать ядерные превращения? Это же дикость какая-то: вылететь из ядра электрон может (при бета-распаде), а шмякнуть по ядру – не может! Что об этом говорит физика высоких энергий? А она об этом умалчивает. По её понятиям, электрон – это объект несерьёзный. Подумаешь, мол, ГэВы имеет. Всё равно – мелочь пузатая. Вот протон – это другое дело. Высокие энергии, дорогие товарищи, оказалось гораздо практичнее измерять не по электронной, а по протонной шкале. Тут уже не до единства измерений – быть бы живу! Ибо, скажем, 3 МэВа у протона – это полноценные 3 МэВа. А 3 МэВа у электрона – это так себе, одно название.


Еще от автора О Х Деревенский
Бирюльки и фитюльки всемирного тяготения

Помните, как в школе мы все замирали словно кролики перед удавом перед законом про "всемирное тяготение" всех масс в мире друг к другу. Нам рисовали на доске двухэтажную формулу, а вместо её доказательства рассказывали анекдот про яблоко, поразившее в темечко спящего автора, который проснулся от удара и тут же этот самый закон записал. Особо сомневающимся в факте взаимного тяготения масс предлагалось для доказательства спрыгнуть откуда-нибудь повыше и посмотреть, что будет.Позже, в институте, доказательство этого закона тоже как-то проскакивали на большой скорости, без ненужных подробностей.И, как оказалось, далеко не случайно.


История физики, изложенная курам на смех

Вся история физики, от начала времен и до наших дней, изложенная честно и беспристрастно. Естественно, как честный человек, описывая современное состояние предмета, автор приходит к вполне очевидному для наших современников (даже совершенно не знающих физики!) выводу:"Когда я слышу, что Галилей заложил основы научного физического метода, я понимаю: мелко же плавал этот Галилей! Куда ему до титанов, которые заложили и перезаложили всю физику с потрохами. Так оно всегда и выходит, когда любителей вытесняют профессионалы.".


Фокусы-покусы квантовой теории

Квантовая теория приводит в трепет даже многих физиков. Ох, как они горды тем, что всякие там доморощенные опровергатели основ суются со своими умничаниями в самые разные области – и в классическую механику, и в электродинамику, и, в особенности, в теорию относительности – но никто не покушается на квантовую теорию! «Даже этим олухам ясно, - веселятся академики, - что без квантовой теории люди бы до сих пор жили в пещерах и бегали с каменными топорами!» Без квантовой теории, мол, не было бы лазеров – а без лазеров, девочки и мальчики, не было бы у вас таких балдёжных дискотек! Без квантовой теории, мол, не было бы понимания того, как движутся электроны в металлах и полупроводниках – а без этого понимания, девочки и мальчики, не было бы у вас ни компьютеров, ни мобильных телефончиков!  Откуда девочкам и мальчикам знать, что всё это – шутки? Лазеры, компьютеры, мобильные телефончики – своим появлением они вовсе не обязаны квантовой теории.


Догонялки с теплотой

В нашей науке достигнут максимум её независимости не только от общества, но и от здравого смысла. За наш счет ученые занимаются тем, чем сами хотят. Они сами отчитываются перед собой и присваивают друг другу оплачиваемые нами впоследствии звания. Они сейчас борются за эксклюзивное право исключительно самостоятельно определять, что есть наука, а что нет. Более того, они желают даже на государственном уровне запрещать другим людям заниматься (даже за собственный счет) тем, что тем интересно, но что противоречит текущим научным фантазиям (пардон, "фундаментальным теориям").Если в обычной жизни обнаруживается чья-то ошибка, её просто исправляют.


Рекомендуем почитать
Белые карлики. Будущее Вселенной

Перед вами первая книга на русском языке, почти целиком посвященная остывающим реликтам звезд, известным под именем белых карликов. А ведь судьба превратиться в таких обитателей космического пространства ждет почти все звезды, кроме самых массивных. История открытия белых карликов и их изучение насчитывает десятилетия, и автор не только подробно описывает их физическую природу и во многом парадоксальные свойства, но и рассказывает об ученых, посвятивших жизнь этим объектам Большого космоса. Кроме информации о сверхновых звездах и космологических проблемах, связанных с белыми карликами, читатель познакомится с историей радиоастрономии, узнает об открытии пульсаров и квазаров, о первом детектировании, происхождении и свойствах микроволнового реликтового излучения и его роли в исследовании Вселенной.


Атомный проект. Жизнь за «железным занавесом»

Ученик великого Э. Ферми, сотрудник Ф. Жолио-Кюри, почетный член Итальянской академии деи Линчей Бруно Понтекорво родился в Италии, работал во Франции, США, Канаде, Англии, а большую часть своей жизни прожил в России. Бруно Понтекорво известен как один из ведущих физиков эпохи «холодной войны». В то время, как главы государств мечтали о мировом господстве, которое им подарит ядерное оружие, лучшие ученые всего мира боролись за «ядерное равновесие» и всеми возможными способами старались не разрывать прочные научные связи, помогавшие двигать науку вперед.


Новый физический фейерверк

Эта книга поможет вам понять, как устроен окружающий мир и чем занимается физика как наука. Легким и неформальным языком она расскажет о физических законах и явлениях, с которыми мы сталкиваемся в повседневной жизни.


Складки на ткани пространства-времени

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы.


Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Климатическая наука: наблюдения и модели

Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.