Фейнмановские лекции по физике. Современная наука о природе - [9]

Шрифт
Интервал

, который всегда возникает над водной поверхностью (пар и вода находятся в равновесии, о чем мы вскоре будем говорить). Кроме того, над водой витают и другие молекулы – то скрепленные воедино два атома кислорода, образующие молекулу кислорода, то два атома азота, тоже слипшиеся в молекулу азота. Воздух почти весь состоит из азота, кислорода, водяного пара и меньших количеств углекислого газа, аргона и прочих примесей.

Итак, над поверхностью воды находится воздух – газ, содержащий некоторое количество водяного пара. Что происходит на этом рисунке? Молекулы воды все время движутся. Время от времени какая-нибудь из молекул близ поверхности получает толчок сильнее остальных и выскакивает вверх. На рисунке этого, конечно, не видно, потому что здесь все неподвижно. Но попробуйте просто представить себе, как одна из молекул только что испытала удар и взлетает вверх, а с другой случилось то же самое и т. д. Так, молекула за молекулой вода исчезает – она испаряется. Если закрыть сосуд, мы обнаружим среди молекул находящегося в нем воздуха множество молекул воды. То и дело некоторые из них снова попадают в воду и остаются там. То, что казалось нам мертвым и неинтересным (скажем, прикрытый чем-нибудь стакан воды, который, может быть, 20 лет простоял на своем месте), на самом деле таит в себе сложный и интересный, беспрерывно идущий динамический процесс. Для нашего грубого глаза в нем ничего не происходит, но стань мы в миллиард раз зорче, мы бы увидали, как все меняется: одни молекулы взлетают, другие оседают.

Почему же мы не видим этих изменений? Да потому, что сколько взлетает молекул, столько же и оседает! В общем-то там «ничего не происходит». Если раскрыть стакан и сдуть влажный воздух, на смену ему притечет уже сухой; число молекул, покидающих воду, останется прежним (оно ведь зависит только от движения в воде), а число возвращающихся молекул сильно уменьшится, потому что их уже над водой почти не будет. Число улетающих молекул превысит число оседающих, вода начнет испаряться. Поэтому, если вам нужно испарять воду, включайте вентилятор!

Но это еще не все. Давайте подумаем, какие молекулы вылетают из воды? Если уж молекула выскочила, то это значит, что она случайно вобрала в себя излишек энергии; он ей понадобился, чтобы разорвать путы притяжения соседей. Энергия вылетающих молекул превосходит среднюю энергию молекул в воде, поэтому энергия остающихся молекул ниже той, которая была до испарения. Движение их уменьшается. Вода от испарения постепенно остывает. Конечно, когда молекула пара опять оказывается у поверхности воды, она испытывает сильное притяжение и может снова попасть в воду. Притяжение разгоняет ее, и в итоге возникает тепло. Итак, уходя, молекулы уносят тепло; возвращаясь – приносят. Когда стакан закрыт, баланс сходится, температура воды не меняется. Если же дуть на воду, чтобы испарение превысило оседание молекул, то вода охлаждается. Поэтому, чтобы остудить суп, дуйте на него!

Вы понимаете, конечно, что на самом деле все происходит гораздо сложнее, чем здесь описано. Не только вода переходит в воздух, но молекулы кислорода или азота время от времени переходят в воду и «теряются» в массе молекул воды. Попадание атомов кислорода и азота в воду означает растворение воздуха в воде; если внезапно из сосуда воздух выкачать, то молекулы воздуха начнут из воды выделяться быстрее, чем проникают в нее; мы увидим, как наверх подымаются пузырьки. Вы, наверно, слыхали, что это явление очень вредно для ныряльщиков.

Перейдем теперь к другому процессу. На фиг. 1.6 мы видим, как (с атомной точки зрения) соль растворяется в воде.


Фиг. 1.6. Молекулы соли, растворяющейся в воде.


Что получается, если в воду бросить кристаллик соли? Соль – твердое тело, кристалл, в котором «атомы соли» расставлены правильными рядами. На фиг. 1.7 показано трехмерное строение обычной соли (хлористого натрия).


Фиг. 1.7. Структура кристалла соли.


Строго говоря, кристалл состоит не из атомов, а из ионов. Ионы – это атомы с излишком или с нехваткой электронов. В кристалле соли мы находим ионы хлора (атомы хлора с лишним электроном) и ионы натрия (атомы натрия, лишенные одного электрона). Ионы в твердой соли скреплены друг с другом электрическим притяжением, но в воде некоторые из них, притянувшись к положительному водороду или отрицательному кислороду, начинают свободно двигаться. На фиг. 1.6 виден освободившийся ион хлора и другие атомы, плавающие в воде в виде ионов. На рисунке нарочно подчеркнуты некоторые детали процесса. Заметьте, например, что водородные концы молекул воды обычно обступают ион хлора, а возле иона натрия чаще оказывается кислород (ион натрия положителен, а атом кислорода в молекуле воды отрицателен, поэтому они притягиваются). Можно из рисунка понять: растворяется здесь соль в воде или же выкристаллизовывается из воды? Ясно, что нельзя; часть атомов уходит из кристалла, часть присоединяется к нему. Процесс этот динамический, подобный испарению; все зависит от того, много или мало соли в воде, в какую сторону нарушено равновесие. Под равновесным понимается такое состояние, когда количество уходящих атомов равно количеству приходящих. Если в воде почти нет соли, то больше атомов уходит в воду, чем возвращается из воды: соль растворяется. Если же «атомов соли» слишком много, то приход превышает уход и соль выпадает в кристаллы.


Еще от автора Ричард Филлипс Фейнман
«Вы, конечно, шутите, мистер Фейнман!»

Книга рассказывает о жизни и приключениях знаменитого ученого-физика, одного из создателей атомной бомбы, лауреата Нобелевской премии, Ричарда Филлипса Фейнмана. Эта книга полностью изменит ваш взгляд на ученых; она рассказывает не об ученом, который большинству людей представляется сухим и скучным, а о человеке: обаятельном, артистичном, дерзком и далеко не таком одностороннем, каковым он смел себя считать. Прекрасное чувство юмора и легкий разговорный стиль автора сделает чтение книги не только познавательным, но и увлекательным занятием.Для широкого круга читателей.


КЭД – странная теория света и вещества

Американский физик Ричард Фейнман – один из создателей атомной бомбы, специалист по квантовой электродинамике, Нобелевский лауреат, но прежде всего – незаурядная, многогранная личность, не вписывающаяся в привычные рамки образа «человека науки». Великолепный оратор, он превращал каждую свою лекцию в захватывающую интеллектуальную игру. На его выступления рвались не только студенты и коллеги, но и люди просто увлеченные физикой.В основу этой книги легли знаменитые лекции Ричарда Фейнмана, прочитанные им в Калифорнийском университете.В этих лекциях прославленный физик рассказывает о квантовой электродинамике – теории, в создании которой принимал участие он сам, – рассказывает простым и доступным языком, понятным даже самому обычному читателю.Не зря даже о самом первом, принстонском издании «КЭД» критики писали: «Книга, которая полностью передает захватывающий и остроумный стиль Фейнмана, сделавшего квантовую электродинамику не только понятной, но и занятной!».


Электродинамика

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Не все ли равно, что думают другие?

Эту книгу можно назвать своеобразным продолжением замечательной автобиографии «Вы, конечно, шутите, мистер Фейнман!», выдержавшей огромное количество переизданий по всему миру. Знаменитый американский физик рассказывает, из каких составляющих складывались его отношение к работе и к жизни, необычайная работоспособность и исследовательский дух. Поразительно откровенны страницы, посвященные трагической истории его первой любви. Уже зная, что невеста обречена, Ричард Фейнман все же вступил с нею в брак вопреки всем протестам родных.


Наука, не-наука и все-все-все

Ричард Фейнман не раз признавался, что строгий порядок, красота и гармония окружающего мира с самого раннего детства приводили его в восхищение и вызывали непреодолимое желание проникнуть в его тайны. Радость узнавания была столь глубокой и искренней, что ему захотелось разделить ее вместе со всеми, что и сподвигло его стать страстным популяризатором науки. Его знаменитые лекции для гуманитариев вошли в легенду и привлекли в науку не одно поколение молодежи.Предлагаемый сборник, в который включены ранее не публиковавшиеся лекции, прочитанные Фейнманом в Вашингтонском университете в 1963 году, открывает знаменитого ученого с новой стороны – как человека, имеющего весьма оригинальное и интересное мнение о конфликте между наукой и религией, о том, можно ли доверять политикам, о нетрадиционной медицине и даже о воспитании детей и посещении Земли НЛО.Публикуется с разрешения издательства Basic Books, an imprint of Perseus Books, a division of PBG Publishing, LLC, a subsidiary of Hachette Book Group, Inc.


Радость познания

Ричард Фейнман (1918–1988) — выдающийся американский физик, удостоенный Нобелевской премии по квантовой электродинамике, один из создателей атомной бомбы, автор знаменитого курса лекций, который стал настольной книгой для каждого, кто открывает для себя потрясающий мир физики.Великолепная коллекция коротких работ гениального ученого, талантливого педагога, великолепного оратора и просто интересного человека Ричарда Фейнмана — блестящие, остроумные интервью и речи, лекции и статьи. Вошедшие в этот сборник работы не просто дают читателю представление об энциклопедическом интеллекте прославленного физика, но и равно позволяют заглянуть в его повседневную жизнь и внутренний мир.Книга мнений и идей — о перспективах науки, об ответственности ученых за судьбы мира, о главных проблемах бытия — познавательно, остроумно и необыкновенно интересно.


Рекомендуем почитать
Астероидно-кометная опасность: вчера, сегодня, завтра

Проблема астероидно-кометной опасности, т. е. угрозы столкновения Земли с малыми телами Солнечной системы, осознается в наши дни как комплексная глобальная проблема, стоящая перед человечеством. В этой коллективной монографии впервые обобщены данные по всем аспектам проблемы. Рассмотрены современные представления о свойствах малых тел Солнечной системы и эволюции их ансамбля, проблемы обнаружения и мониторинга малых тел. Обсуждаются вопросы оценки уровня угрозы и возможных последствий падения тел на Землю, способы защиты и уменьшения ущерба, а также пути развития внутрироссийского и международного сотрудничества по этой глобальной проблеме.Книга рассчитана на широкий круг читателей.


Жизнь в невозможном мире: Краткий курс физики для лириков

Доказала ли наука отсутствие Творца или, напротив, само ее существование свидетельствует о разумности устройства мироздания? Является ли наш разум случайностью или он — отражение того Разума, что правит Вселенной? Объективна ли красота? Существует ли наряду с миром явлений мир идей? Эти и многие другие вопросы обсуждает в своей книге известный физик-теоретик, работающий в Соединенных Штатах Америки.Научно-мировоззренческие эссе перемежаются в книге с личными воспоминаниями автора.Для широкого круга читателей.Современная наука вплотную подошла к пределу способностей человеческого мозга, и когнитивная пропасть между миром ученого и обществом мало когда была столь широка.


Наблюдения и озарения, или Как физики выявляют законы природы

Все мы знакомы с открытиями, ставшими заметными вехами на пути понимания человеком законов окружающего мира: начиная с догадки Архимеда о величине силы, действующей на погруженное в жидкость тело, и заканчивая новейшими теориями скрытых размерностей пространства-времени.Но как были сделаны эти открытия? Почему именно в свое время? Почему именно теми, кого мы сейчас считаем первооткрывателями? И что делать тому, кто хочет не только понять, как устроено все вокруг, но и узнать, каким путем человечество пришло к современной картине мира? Книга, которую вы держите в руках, поможет прикоснуться к тайне гениальных прозрений.Рассказы «Наблюдения и озарения, или Как физики выявляют законы природы» написаны человеком неравнодушным, любящим и знающим физику, искренне восхищающимся ее красотой.


Коллайдер

Осенью 2008 года газеты запестрели заголовками, сообщавшими» будто в недрах Большого адронного коллайдера (БАК), на котором физики собирались расщепить вещество на элементарные частицы, родятся микроскопические черные дыры, способные поглотить Землю.Какое значение имеет БАК для науки? Что ученые ищут? Почему физика, возможно, вскоре совершит один из величайших рывков в своей истории? Все эти вопросы обсуждаются в книге «Коллайдер». Автор, кроме всего прочего, доказывает, почему невозможно ни практически, ни теоретически, что на БАК появятся черные мини-дыры, которых все так боятся.


Радиация. Дозы, эффекты, риск

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Физика и философия

Вернер Карл Гейзенберг (нем. Werner Heisenberg; 5 декабря 1901, Вюрцбург — 1 февраля 1976, Мюнхен) — немецкий физик, создатель «матричной квантовой механики Гейзенберга», лауреат нобелевской премии по физике (1932). Умер в 1976 году от рака.


Волшебная гора

«Волшебная гора» – туберкулезный санаторий в Швейцарских Альпах. Его обитатели вынуждены находиться здесь годами, общаясь с внешним миром лишь редкими письмами и телеграммами. Здесь время течет незаметно, жизнь и смерть утрачивают смысл, а мельчайшие нюансы человеческих отношений, напротив, приобретают болезненную остроту и значимость. Любовь, веселье, дружба, вражда, ревность для обитателей санатория словно отмечены тенью небытия… Эта история имеет множество возможных прочтений – мощнейшее философское исследование жизненных основ, тонкий психологический анализ разных типов человеческого характера, отношений, погружение в историю культуры, религии и в историю вообще – Манн изобразил общество в канун Первой мировой войны.


Миф о Сизифе

«Миф о Сизифе» — философское эссе, в котором автор представляет бессмысленный и бесконечный труд Сизифа как метафору современного общества. Зачем мы работаем каждый день? Кому это нужно? Ежедневный поход на службу — такая же по существу абсурдная работа, как и постоянная попытка поднять камень на гору, с которой он все равно скатится вниз.


Тень ветра

Книга-явление. Книга-головоломка. Книга-лабиринт. Роман, который заставляет читателя погрузиться в почти мистический мир Барселоны и перемещает его в совершенно иную систему координат. Читателю предстоит вместе с главным героем встретить зловещих незнакомцев, понять и полюбить прекрасных и загадочных женщин, бродить по мрачным лабиринтам прошлого, и главное – раскрыть тайну книги, которая непостижимым образом изменяет жизнь тех, кто к ней прикасается.


Приключения Шерлока Холмса. Возвращение Шерлока Холмса

Два полных авторских сборника – «Приключения Шерлока Холмса» и «Возвращение Шерлока Холмса». Здесь будут жених, опасающийся мести бывшей возлюбленной, и невеста, брошенная в день венчания; загадочные апельсиновые зернышки и тайный код пляшущих человечков, смертоносный китобойный гарпун и рождественский гусь с сюрпризом… Но главное – главное, что здесь будет, – это удивительная атмосфера старой доброй Англии со всеми ее красками, запахами и звуками. И даже если вы знаете наизусть все истории о знаменитом дуэте, вы все равно не сможете отказать себе в удовольствии в который раз открыть книгу, а вместе с ней – и знакомую дверь на Бейкер-стрит, 221-b.