Эволюция Вселенной и происхождение жизни - [134]

Шрифт
Интервал

Самым важным в спектре Лебедя А было его красное смещение, равное 0,057. Основываясь на нем, Бааде и Минковский вычислили расстояние до этой галактики: при современной шкале расстояний оно получается равным 8оо млн световых лет (250 Мпк). Лебедь А оказался на поразительно большом расстоянии, если учесть, что это второй по яркости радиоисточник на небе. При известном расстоянии легко вычислить, что радиоизлучение этого источника соответствует мощности излучения сотни миллиардов звезд! Это в десять раз превышает мощность излучения всех звезд галактики Лебедь А. В звездах протекают термоядерные реакции; но откуда же берется та загадочная энергия, которая превосходит ядерную в десятки раз?

Лебедь А настолько ярок, что его можно было бы легко заметить с помощью радиотелескопа, даже если бы он был в десять раз дальше. Его радиоизлучение исходит из двух областей, разделенных на небе расстоянием чуть больше одной минуты дуги, а сама галактика лежит как раз посередине между областями излучения (рис. 26.5). Лебедь А — это пример двойного радиоисточника. Его две радиообласти удалены друг от друга на 0,4 млн световых лет. У других двойных радиоисточников расстояние между областями излучения бывает иное. Грандиозный масштаб этого явления связывают с тем, что центральные галактики двойных радиоисточников входят в число самых крупных галактик во Вселенной.

Рис. 26.5. Двойной радиоисточник Лебедь А в направлении созвездия Лебедь. Тонкий джет связывает активное ядро галактики с внешними радиокомпонентами. Карта VLA с разрешения R. А. Perley.

Открытие квазаров

Измерения размеров радиоисточников активизировались в конце 1950-х годов. Группа радиоастрономов из Манчестера специализировалась на источниках малого углового размера, но даже их радиотелескоп не мог разрешить структуру нескольких источников: они выглядели как точки. Одним из этих источников был 3С 48. Его точное положение на небе измерил Томас Мэтьюз, использовав радиотелескоп в долине Оуэнс (Калифорния), и передал координаты в Паломарскую обсерваторию Аллану Сэндиджу. Тот сфотографировал эту область неба и нашел на месте радиоисточника тусклую звезду. В конце 1960 года Сэндидж доложил о своем открытии на съезде Американского астрономического общества. Он пришел к выводу, что это первая реальная радиозвезда в нашей Галактике. При этом он заметил, что это могла бы быть и далекая галактика, но поскольку ее наблюдаемый блеск меняется, гипотеза о том, что это галактика, выглядит невероятной. Действительно, как могут сотни миллиардов звезд изменяться настолько синхронно, чтобы вся галактика становилась ярче или тусклее?

Пока в Америке Сэндидж и Мэтьюз размышляли о природе 3С 48, Сирил Хазард из Манчестерской группы разработал метод очень точного определения положения радиоисточников и вместе со своими австралийскими коллегами применил его. Когда Луна проходит перед радиоисточником, его излучение исчезает, как только край Луны закрывает радиолуч. Движение Луны по небу известно очень точно, следовательно, момент исчезновения радиоисточника, как и момент его последующего появления, позволяют точно определить его положение.

Этим способом определили положение радиоисточника 3С 273 и послали данные в Паломарскую обсерваторию. Мэтьюз обнаружил, что этот источник точно совпадает со звездой в созвездии Дева. Голландский астроном Мартен Шмидт, работавший в Паломарской обсерватории, сфотографировал спектр этой звезды и нашел в нем семь линий. Ни он сам и никто другой в обсерватории не могли сказать, какому элементу принадлежат эти линии. Чтобы выяснить это, Шмидт начал измерять точные длины волн спектральных линий, используя ближайшую бальмеровскую линию водорода как стандарт.

Длина волны первой линии оказалась в 1,16 раза больше, чем длина волны ближайшей бальмеровской линии. Длина волны второй линии тоже была в 1,16 раза больше, чем у следующей бальмеровской линии. И у третьей линии выявилась та же закономерность. Шмидт понял: эти неизвестные линии сами являются бальмеровскими линиями, но все они сдвинуты на 16 % по отношению к обычным длинам волн. Иными словами, красное смещение в спектре источника 3С 273 равнялось z = 0,16. Если обычным образом использовать красное смещение как индикатор расстояния, то получается, что 3С 273 удален на 2400 млн световых лет (в тысячу раз дальше галактики Андромеда!).

Теперь стало ясно, почему так трудно было интерпретировать спектры радиозвезд. У звезд нашей Галактики линии не могут быть сдвинуты так сильно! Никто не предполагал, что смещение линий в этих спектрах может быть таким большим, характерным для далеких галактик. Тем же способом разгадали загадку спектра 3С 48. В этом случае красное смещение оказалось равным z = 0,37, а расстояние около 6000 млн световых лет. Несмотря на такие колоссальные расстояния, 3С 273 и 3С 48 хорошо видны в телескоп. Легко посчитать, что каждая из этих «звезд» светит в сотню раз мощнее крупной галактики.

Вскоре обнаружились новые радиозвезды. Их назвали квазарами (quasi-stellar objects), поскольку выглядят они как звезды, но в действительности эквивалентны миллионам звезд. Кроме того, их блеск часто меняется за короткое время, например от одной ночи к другой. А скорость изменения говорит нам о размере источника. За сутки свет проходит расстояние в одни световые сутки, что составляет около 200 астрономических единиц, или чуть больше размера Солнечной системы. Источник, который становится значительно ярче за одни сутки, не может быть больше этого размера. Ведь чтобы он смог изменить свой блеск всего за сутки, он должен за это время перестроить все излучающие поверхности на новый уровень блеска. А такую перестройку невозможно произвести со скоростью выше скорости света. Если же перестройка происходит медленнее, то квазар может быть существенно меньше Солнечной системы. Таким образом, в квазаре размером не больше Солнечной системы выделяется больше энергии, чем во всей галактике диаметром 100 000 световых лет!


Рекомендуем почитать
Сферы света [Звезды]

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Жители планет

«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».


Удивительная астрономия

Книга посвящена чрезвычайно увлекательному предмету, который, к сожалению, с недавних пор исключен из школьной программы, – астрономии. Читатель получит представление о природе Вселенной, о звездных и планетных системах, о ледяных карликах и огненных гигантах, о туманностях, звездной пыли и других удивительных объектах, узнает множество интереснейших фактов и, возможно, научится мыслить космическими масштабами. Книга адресована всем, кто любит ясной ночью разглядывать звездное небо.


Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории

Книга Брайана Грина «Элегантная Вселенная» — увлекательнейшее путешествие по современной физике, которая как никогда ранее близка к пониманию того, как устроена Вселенная. Квантовый мир и теория относительности Эйнштейна, гипотеза Калуцы — Клейна и дополнительные измерения, теория суперструн и браны, Большой взрыв и мультивселенные — вот далеко не полный перечень обсуждаемых вопросов.Используя ясные аналогии, автор переводит сложные идеи современной физики и математики в образы, понятные всем и каждому.


Большой космический клуб. Часть 1

Книга «Большой космический клуб» рассчитана на широкий круг читателей и рассказывает об образовании, становлении и развитии неформальной группы стран и организаций, которые смогли запустить национальные спутники на собственных ракетах-носителях с национальных космодромов.


Пятьдесят лет в космической баллистике

Автор книги Анатолий Викторович Брыков — участник Великой Отечественной войны, лауреат Ленинской премии, заслуженный деятель науки и техники РСФСР, почетный академик и действительный член Академии космонавтики им. К. Э. Циолковского, доктор технических наук, профессор, ведущий научный сотрудник 4 Центрального научно-исследовательского института Министерства обороны Российской Федерации.С 1949 года, после окончания Московского механического института, работал в одном из ракетных научно-исследовательских институтов Академии артиллерийских наук в так называемой группе Тихонравова.


Шерлок Холмс: наука и техника

Автор книги использует потрясающие приключения великого детектива в качестве трамплина в реальный мир судебной медицины и судебных случаев, которые послужили основой для написания замечательных историй о Шерлоке Холмсе. Из книги вы узнаете о знаменитых ученых, исследователях и судебно-медицинских экспертах, таких, как Эжен Видок из парижской сыскной полиции Сюрте, непреклонный детектив из Лондона Генри Годдард, специалист по отпечаткам пальцев сэр Френсис Гальтон и блестящий, хотя и несколько самоуверенный патологоанатом сэр Бернард Спилсбури.