Эволюция Вселенной и происхождение жизни - [132]

Шрифт
Интервал

Но это не было выдумкой: настало время исследовать небесные радиоволны. Во время Второй мировой войны антенные технологии сделали огромный шаг вперед, и после войны огромное количество антенн осталось без работы. Астрономы воспользовались этой возможностью, и в конце 1940-х годов родилась радиоастрономия. Кроме Янского и Рёбера нужно отметить еще Мартина Райла (19181984) из Кембриджского университета, который стал одним из первых исследователей в этой новой области науки и получил Нобелевскую премию. Астроном Ян Оорт, о котором мы уже говорили в связи с его исследованиями Галактики, также очень рано понял значение радиоволн как нового инструмента для исследования Вселенной.

Выяснилось, что интенсивность радиоизлучения примерно одинакова на различных частотах — в этом случае говорят о непрерывном спектре. Рёбер считал, что источником излучения служат электроны, которые в ионизованной среде, проходя вблизи атомных ядер, движутся по искривленной траектории. Но наблюдения не подтвердили эту идею: такое «тормозное излучение» действительно имеет непрерывный спектр, но его характерная форма и точка обрезания не соответствуют радионаблюдениям. Райл и Оорт считали, что радиоволны приходят от звезд, которые отличаются от Солнца тем, что по какой-то причине обладают очень мощным радиоизлучением; но и они ошиблись.

Загадка радиошума начала проясняться, когда Карл Кипенхойер (1910–1975) в 1950 году предположил связь между космическими лучами и радиошумами. В том же году Ханнес Альвен (Швеция) и Николаи Херлофсон (Норвегия) предположили, что причиной шума является распространение космических лучей со скоростью, близкой к скорости света. Такое синхротронное излучение наблюдается и в ускорителях частиц, где магнитные поля заставляют заряженные частицы двигаться по кругу. В космосе высокоэнергичные электроны вращаются в магнитных полях, испуская радиоизлучение; в принципе, то же самое происходит при колебании электронов в антенне радиопередатчика (рис. 26.3). Виталий Лазаревич Гинзбург (1916–2009, Нобелевская премия 2003 года) и Иосиф Самуилович Шкловский (1916–1986) были среди тех ученых, кто развил теорию синхротронного излучения.

Рис. 26.3. Электроны, обращаясь вокруг магнитных силовых линий, испускают синхротронное излучение.

Спектральные линии радиоизлучения.

В 1944 году молодой голландский студент Хенк ван де Хюлст (1918–2000) по совету Оорта занялся исследованием того, могут ли быть спектральные линии в радиоизлучении. Спектральные линии доказали свое значение в оптической астрономии, где их используют для изучения движения звезд и галактик, а также и многих других свойств этих объектов. Радиоизлучение со спектральными линиями открыло бы новое окно во Вселенную.

Ван де Хюлст обнаружил, что переход атома водорода между его двумя энергетическими уровнями может привести к излучению на длине волны около 21 см, что попадает в область радиоволн. При этом электрон не прыгает с одной орбиты на другую, а лишь чуть-чуть меняет свое положение. Как уже было сказано, у электрона есть свойство, называемое спином, которое можно представить себе как вращение вокруг оси. Ядро атома водорода — протон — тоже имеет свой спин. Спины протона и электрона могут быть параллельны или антипараллельны; в первом случае атом водорода находится в возбужденном состоянии. Когда из возбужденного состояния атом переходит в свое основное состояние, он излучает фотон, энергия которого равна энергии возбуждения. Поскольку эта энергия очень мала, соответствующая частота излучения низка (1420,4 МГц), а длина волны велика и составляет, если точно, 21,1 см (рис. 26, 4).

Рис. 26.4. Испускание излучения с длиной волны 21 см при переходе атома водорода из возбужденного состояния в основное.

Водород — самый распространенный элемент Вселенной, поэтому нет недостатка в потенциальных излучателях на радиоволне 21 см. Атомы водорода могут переходить в возбужденное состояние при взаимных столкновениях. Примерно через и млн лет это возбуждение «разряжается», и рождается квант с длиной волны 21 см. Несмотря на то что каждый атом излучает так редко, в Галактике настолько много атомов водорода, что вместе они могли бы дать мощный сигнал. Действительно, в 1951 году сигнал был обнаружен в наблюдениях, проведенных в США и Нидерландах. Источником излучения оказались холодные межзвездные облака, на существование которых раннее указывали лишь косвенные данные.

Если оптическая астрономия позволила выяснить распределение звезд в Галактике, то радиоастрономия дала возможность узнать, как распределен в пространстве другой ее важнейший компонент — межзвездный газ. Уже к 1958 году была составлена радиокарта Галактики с четкими признаками ее спиральной структуры. Эту работу проделали Ян Оорт, Фрэнк Керр (1918–2000) и Гарт Вестерхаут. В 1951 году Керр приступил к программе наблюдений южного неба в линии 21 см и начал составлять карту Магеллановых Облаков. Так впервые была зафиксирована радиолиния в спектре другой галактики.

Водород не единственный излучатель спектральных линий в радиодиапазоне. Молекула ОН, состоящая из одного атома водорода и одного атома кислорода, была обнаружена в космосе в 1963 году по ее спектральной линии 18 см. Затем в 1968 году нашли излучение молекул воды и аммиака, после чего поток новых открытий молекул в космосе уже не прекращался. В 1970-е годы по спектральным линиям ежегодно обнаруживали около пяти новых молекул, так что сейчас их число около 150. Тем временем накапливались данные о межзвездных облаках разного типа. Наиболее обильными местами обнаружения молекул в космосе являются молекулярные облака. В них при относительно высокой плотности газа и происходят сложные химические реакции. Молекулярное облако может быть весьма массивным: массивнее чем 100 000 звезд.


Рекомендуем почитать
Есть ли Бог

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Сферы света [Звезды]

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Жители планет

«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».


Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории

Книга Брайана Грина «Элегантная Вселенная» — увлекательнейшее путешествие по современной физике, которая как никогда ранее близка к пониманию того, как устроена Вселенная. Квантовый мир и теория относительности Эйнштейна, гипотеза Калуцы — Клейна и дополнительные измерения, теория суперструн и браны, Большой взрыв и мультивселенные — вот далеко не полный перечень обсуждаемых вопросов.Используя ясные аналогии, автор переводит сложные идеи современной физики и математики в образы, понятные всем и каждому.


Большой космический клуб. Часть 1

Книга «Большой космический клуб» рассчитана на широкий круг читателей и рассказывает об образовании, становлении и развитии неформальной группы стран и организаций, которые смогли запустить национальные спутники на собственных ракетах-носителях с национальных космодромов.


Пятьдесят лет в космической баллистике

Автор книги Анатолий Викторович Брыков — участник Великой Отечественной войны, лауреат Ленинской премии, заслуженный деятель науки и техники РСФСР, почетный академик и действительный член Академии космонавтики им. К. Э. Циолковского, доктор технических наук, профессор, ведущий научный сотрудник 4 Центрального научно-исследовательского института Министерства обороны Российской Федерации.С 1949 года, после окончания Московского механического института, работал в одном из ракетных научно-исследовательских институтов Академии артиллерийских наук в так называемой группе Тихонравова.


Шерлок Холмс: наука и техника

Автор книги использует потрясающие приключения великого детектива в качестве трамплина в реальный мир судебной медицины и судебных случаев, которые послужили основой для написания замечательных историй о Шерлоке Холмсе. Из книги вы узнаете о знаменитых ученых, исследователях и судебно-медицинских экспертах, таких, как Эжен Видок из парижской сыскной полиции Сюрте, непреклонный детектив из Лондона Генри Годдард, специалист по отпечаткам пальцев сэр Френсис Гальтон и блестящий, хотя и несколько самоуверенный патологоанатом сэр Бернард Спилсбури.