Евклидово окно - [65]

Шрифт
Интервал

22 х (разнесенность север — юг) + g 12 x (разнесенность восток — запад) х (разнесенность север — юг)[255]. Числа, обозначенные через g, называются метрикой пространства (а сами факторы g называются компонентами метрики). Поскольку метрика определяет расстояние между двумя точками, она, геометрически говоря, полностью характеризует пространство. Для евклидовой плоскости и прямоугольных координат компоненты метрики попросту g 11 = g 22 = 1, а g 12 = 0. В этом случае формула Непифагора превращается в обычную пифагорову. В других типах пространства компоненты не так просты, и их значения могут варьировать в зависимости от вашего местоположения. В общей теории относительности эти представления обобщены для трех пространственных измерений и, как и в специальной теории, включают время как четвертое измерение (в четырехмерном пространстве метрика имеет десять независимых компонентов)[256].

Работа Эйнштейна 1915 года предъявляла уравнение, описывающее распределение материи в пространстве (и времени) в связи с метрикой четырехмерного пространства-времени. Поскольку метрика определяет геометрию, уравнения Эйнштейна определяют форму пространства-времени. В теории Эйнштейна масса не производит гравитационного воздействия, а меняет пространство-время.

Хотя пространство и время взаимосвязаны, однако, если ограничиться определенными обстоятельствами, как то: малыми скоростями и слабой гравитацией, — пространство и время можно рассматривать более-менее порознь. В таком случае допустимо говорить об одном лишь пространстве и о его кривизне. Согласно теории Эйнштейна, искривление области пространства (усредненное во всех направлениях) определяется массой в этой области.

Как мы уже убедились, искривление отражено в отношении площади круга к его радиусу или объему сферы с таким радиусом. Уравнения Эйнштейна утверждают, что при заданной сферической области пространства с равномерно распределенной в ней материей, измеряемый радиус этой сферы будет меньше ожидаемого (с учетом ее объема) пропорционально значению массы внутри нее. Постоянная в этой пропорции чрезвычайно мала: на каждый грамм массы радиус уменьшается всего на 2,5 х 10–29 сантиметра, т. е. 0,000000000000000000000000000025 см. Для нашей планеты, с допущением равномерности ее плотности, разница в радиусах — 1,5 миллиметра. Для Солнца — полкилометра[257].

Проявления кривизны пространства-времени на Земле минимальны и лишь недавно получили практическое применение (системы спутниковой навигации, к примеру, чтобы сохранялась синхронизация, требуют релятивистских поправок настройки)[258]. Эйнштейн на протяжении многих лет и не предполагал, что изгибание света под действием сил тяготения вообще можно как-то измерить. Но вот наконец решил взглянуть в небо. Эксперимент принципиально прост: дождитесь следующего солнечного затмения и в том месте и в то время, где и когда затмение наблюдается, измерьте положение какой-нибудь звезды, что проявится рядом с Солнцем в процессе затмения (из-за этого затмение и нужно: если Солнце ничто не загораживает, звезду никак не увидать); далее найдите данные о положении этой звезды, скажем, полугодичной давности, когда свет ее достигал ваших глаз, не касаясь нашей родной звезды. Во время затмения проверьте, возникает ли эта звезда там, где «должна», — или слегка «в стороне».

«Слегка» в данном случае — и впрямь слегка: всего 13/4 угловой секунды, или 0,00049°. Сам Ньютон мог бы открыть это явление, хотя его теория предсказывала иное отклонение. К 1915 году Эйнштейн уже сформулировал свои уравнения поля и сделал наилучшее свое предсказание. Первая подлинная проверка общей теории относительности заключалась, таким образом, не в удостоверении изгибания света, а в том, насколько именно он изгибается. Уверенности Эйнштейну хватало.

Глава 28. Торжество синевласых

Для наблюдения за солнечным затмением 29 мая 1919 года были отправлены две британские экспедиции. Артур Стэнли Эддингтон вел в бразильский Собраль ту, которая добилась успеха[259]. Эддингтон писал перед своим отъездом: «Нынешние экспедиции к месту затмения могут впервые выявить вес света[260]; или же им удастся подтвердить странную теорию Эйнштейна о неевклидовом пространстве; или же они приведут к еще более далеко идущим последствиям — что нет никакого отклонения»[261]. На анализ полученных данных ушло много месяцев. Наконец, 6 ноября, результаты были объявлены на общем собрании Королевского научного и Королевского астрономического обществ. «Нью-Йорк Таймс», до сих пор ни разу не помянувшая Эйнштейна, учуяла, что этой-то новости найдется место на ее страницах[262]. Хотя, похоже, газета все равно неверно оценила важность этой новости: отправила обозревателем своего корреспондента по гольфу, Генри Крауча. Крауч даже на собрание не явился, однако с Эддингтоном все же поговорил.

На следующий день передовица лондонской «Таймс» гласила: «РЕВОЛЮЦИЯ В НАУКЕ», а ниже, помельче, «Новая теория Вселенной» и «Ньютоновским идеям конец». Отчет в «Нью-Йорк Таймс» вышел тремя днями позже, с заголовком «ТЕОРИЯ ЭЙНШТЕЙНА ТОРЖЕСТВУЕТ». Статья в «Нью-Йорк Таймс» воспевала Эйнштейна, одновременно выражая сомнение, не оптическая ли иллюзия этот эффект, и не спер ли Эйнштейн идею из романа Уэллса «Машина времени». Возраст Эйнштейна они переврали, сообщив, что ему «около пятидесяти», а ему было тогда сорок, зато фамилию напечатали правильно. Эйнштейн мгновенно стал мировой знаменитостью, а для многих — сверхъестественным гением. Одна восторженная школьница написала ему письмо с вопросом, существует ли он на самом деле. Всего за год о теории относительности было написано более сотни книг. Лекционные залы по всему миру ломились от желающих услышать популярное изложение теории. «Сайнтифик Америкэн» объявил награду в 5000 долларов за лучшее толкование длиной до 3000 слов. (Эйнштейн отмечал, что лишь он один среди всех его друзей не участвовал в этом конкурсе.)


Еще от автора Леонард Млодинов
Кратчайшая история времени

Природе пространства и времени, происхождению Вселенной посвящена эта научно-популярная книга знаменитого английского астрофизика Стивена Хокинга, написанная в соавторстве с популяризатором науки Леонардом Млодиновым. Это новая версия всемирно известной «Краткой истории времени», пополненная последними данными космологии, попытка еще проще и понятнее изложить самые сложные теории.


Высший замысел

Соавторство Стивена Хокинга и Леонарда Млодинова, специалиста по квантовой теории и теории хаоса, являет собой успешный творческий тандем, что уже подтвердило их совместное произведение «Кратчайшая история времени», которое имело небывалый успех.«Высший замысел» — новая захватывающая работа этих удивительных авторов.Цель этой книги — дать ответы на волнующие нас вопросы существования Вселенной, ответы, основанные на последних научных открытиях и теоретических разработках. Они приводят нас к уникальной теории, описывающей огромную, изумительно разнообразную Вселенную, — к теории, которая позволит нам разгадать Высший замысел.


Великий замысел

Все мы существуем лишь непродолжительный период времени и на его протяжении способны исследовать лишь небольшую часть мироздания. Но люди — существа любопытные. Мы задаемся вопросами, мы ищем на них ответы. Живя в этом огромном мире, который бывает то добрым, то жестоким, и вглядываясь в бесконечное небо, люди постоянно задаются множеством вопросов: Как мы можем понять мир, в котором оказались? Как ведёт себя Вселенная? Какова природа реальности? Откуда всё это возникло? Нуждалась ли Вселенная в создателе? Многие из нас не тратят много времени на эти вопросы, но почти все из нас когда-либо об этом задумывались.Один из самых известных ученых нашего времени — Стивен Хокинг написал книгу, продолжающую тему, начатую в его предыдущих книгах.


(Нео)сознанное. Как бессознательный ум управляет нашим поведением

Все наши суждения — от политических предпочтений до оценки качества бытовых услуг — отражают работу нашего ума на двух ярусах: сознательном и неосознанном, скрытом от нашего внимания. Неповторимый стиль Леонарда Млодинова — живой, ясный язык, юмор и способность объяснять сухие научные факты так, чтобы они были понятны самой широкой аудитории — позволяет нам понять, как неосознанное влияет на нашу жизнь, по-новому взглянуть на отношения с друзьями, супругами, пересмотреть представления о себе самих и о мире вокруг.vk.com/psyfb2.


Эластичность. Гибкое мышление в эпоху перемен

Леонард Млодинов – американский физик и ученый, специалист по квантовой теории и теории хаоса, автор десятка книг, а также успешный популяризатор науки, легко и доходчиво объясняющий сухие научные факты. Существует два основных способа мышления: аналитическое, в котором преобладает логика, и эластичное, которое формирует новые идеи и неожиданные решения задач. Именно эластичное мышление позволяет человеку успешно приспосабливаться к безумному ритму жизни. Из книги вы узнаете: почему полезно выходить из зоны комфорта; как справляться с огромным количеством информации и не сойти с ума; как мозг создает смыслы и учится адаптации; как Мэри Шелли, Дэвид Боуи и Альберт Эйнштейн использовали эластичное мышление; почему игра Pokemon Go обрела небывалую популярность.


Стивен Хокинг. О дружбе и физике

Стивен Хокинг был одним из наиболее влиятельных физиков современности, и его жизнь затронула и отчасти поменяла жизни миллионов людей. Леонард Млодинов обращается к тем двум десятилетиям, в которые он был коллегой и другом ученого, чтобы нарисовать его портрет – уникальный и очень личный. Он знакомит с Хокингомгением, ломающим голову над загадками Вселенной и всего мироздания и в конце концов формулирующим смелую теорию об излучении черных дыр, которая заставила космологов и физиков посмотреть на проблему происхождения космоса с абсолютно нового угла.


Рекомендуем почитать
Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.