Этот правый, левый мир - [68]

Шрифт
Интервал

Если рассмотреть и электрические заряды и магнитные оси одновременно, то можно изобразить частицу и ее античастицу таким образом, что одна из них будет зеркальным отображением другой. В качестве примера на рис. 59 показаны электрон и позитрон, а на рис. 60 — протон и антипротон. Отметим, что на рисунках показаны лишь символические модели; истинная картина может быть правильно выражена лишь на языке волновых функций квантовой механики. Тем не менее, как и в случае структурных диаграмм молекул, представляющих по существу просто схему межатомных химических связей, такие условные рисунки весьма полезны и зачастую помогают выяснению существа проблемы.

Рис. 59. Модель электрона (слева) и модель позитрона (справа).
Рис. 60. Модель протона (слева) и модель антипротона (справа).

Глядя на эти диаграммы, невольно думаешь: а не являются ли античастицы действительно зеркальными изображениями реальных частиц? В самом деле, единственная разница между правой и левой частицами на каждом рисунке, кроме зеркальной сопряженности их структур, состоит в том, что одна из них заряжена положительно, а другая — отрицательно. Не связано ли (пока неизвестно, как именно) различие между положительным и отрицательным зарядами с какой-либо асимметрией пространственной структуры самой частицы? Не выявят ли будущие исследования структуры электрона (о которой мы, как говорил Теллер, не имеем «все еще» никаких сведений) пространственную асимметрию? Ведь установили же исследования химиков в прошлом столетии, что «оптические изомеры» Пастера являются зеркальными отображениями друг друга! Вспомним, как коллеги Вант Гоффа презрительно отзывались о его работах в этом направлении, как о «жалких спекулятивных рассуждениях».

Пастер и Вант Гофф обладали глубокой интуицией и той вдумчивостью, которая сродни проницательности Канта, усомнившегося в идеальности своего слуха. Как могут быть два предмета совершенно одинаковыми во всех отношениях и вместе с тем в чем-то различаться? Именно почему электрон и позитрон совершенно подобны и все же различаются знаком заряда? Рассматривая приведенные выше диаграммы, можно дать такой ответ: они действительно одинаковы и все-таки «что-то не так».

Даже после открытия античастиц физики не принимали всерьез гипотезу о том, что античастицы могут действительно быть зеркальным отображением некой неизвестной асимметричной структуры. Причина такого скептицизма проста: если бы в строении частиц существовала некая пространственная асимметрия, то она, безусловно, проявлялась бы в том, что четность каким-нибудь способом нарушалась. Иначе говоря, тогда можно было бы осуществить эксперимент, в котором асимметрия частиц приводила бы к какому-то измеримому (а не символическому или схематическому) асимметричному пространственному распределению, то есть существовало бы измеримое различие правого и левого. Таких экспериментов тогда не существовало. Четность всегда сохранялась.

Затем в промежутке между 1954 и 1956 годами создалась любопытная ситуация с двумя частицами, называвшимися в то время тета-мезон и тау-мезон. Занимательную историю о том, как эта «загадка тета-тау» привела к падению закона сохранения четности, мы узнаем в следующей главе.

Глава 22. Ниспровержение четности

Как известно каждому в наше время, в основе всех процессов, происходящих во Вселенной, лежат четыре основных типа сил (физики предпочитают термин «взаимодействие», но мы можем употребить здесь более привычный термин «силы»):

1) ядерные силы;

2) электромагнитные силы;

3) силы слабых взаимодействий;

4) гравитационные силы.

В этом перечне силы расположены по убыванию своей величины. Самые мощные — ядерные силы — удерживают вместе протоны и нейтроны в атомном ядре. Они обеспечивают так называемую энергию связи ядра. Электромагнетизм — это та сила, которая удерживает электроны возле ядра, связывает атомы в молекулы, образует из молекул жидкости и твердые тела. Тяготение, как хорошо известно, есть та сила, с которой две любые массы притягиваются друг к другу. Именно они обеспечивают существование таких больших масс, как наша планета. Гравитационные силы настолько слабы, что их крайне трудно измерить, пока величины взаимодействующих масс не станут очень большими. На уровне элементарных частиц влияние этих сил пренебрежимо мало.

Оставшаяся категория сил — силы слабого взаимодействия — наименее известна. Они проявляются в некоторых процессах с участием элементарных частиц (например, в бета-распаде, при котором радиоактивное ядро «выстреливает» электрон или позитрон), где реакция протекает гораздо медленнее, чем если бы ею управляли ядерные или электромагнитные силы. Для объяснения столь малой скорости процесса и пришлось предложить существование сил, более слабых, чем электромагнитные, но превосходящих крайне слабые силы гравитации.

«Проблема тета-тау», над которой физики ломали головы в 1956 году, возникла в связи со слабыми взаимодействиями, в которых участвовала «странная частица», называемая K-мезоном. («Странные частицы» — это класс недавно обнаруженных частиц, получивших свое название из-за того, что они, казалось, никак не укладывались в систему остальных известных к тому времени частиц.) Было похоже, что существуют два различных типа


Еще от автора Мартин Гарднер
Математические головоломки и развлечения

Книга известного американского популяризатора науки М. Гарднера содержит множество занимательных задач и головоломок из самых различных областей математики. Благодаря удачному подбору материла, необычной форме его подачи и тонкому юмору автора она не только доставит удовольствие любителям математики, желающим с пользой провести свой досуг, но и может быть полезной преподавателям математики школ и колледжей в их работе.


Есть идея!

Книга известного американского популяризатора науки Mapтина Гарднера, посвященная поиску удачных идей для решений задач из области комбинаторики, геометрии, логики, теории чисел и игр со словами.Рассчитана на самый широкий круг читателей.


Математические чудеса и тайны

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Теория относительности для миллионов

Книга Гарднера — это популярное изложение специальной и общей теории относительности, действительно рассчитанное на миллионы читателей.Увлекательно и доступно написанная, она будет понятна всем, начиная со школьников старших классов. Особо следует отметить прекрасные иллюстрации. Благодаря им книга похожа на альбом под названием «Теория относительности в картинках».Впрочем, именно такой и должна быть популярная книга.


Когда ты была рыбкой, головастиком - я...

      Имя Мартина Гарднера (р. 1914) хорошо известно в России. За свою долгую жизнь он написал более 70 книг, ставших популярными во всем мире, многие из них издавались и на русском языке. Гарднер — автор огромного количества статей, посвященных математике (на протяжении 25 лет он вел колонку математических игр и фокусов в журнале «Scientific America»), а также фантастических рассказов и эссе на самые разные темы. В сборник «Когда ты была рыбкой, головастиком — я…» вошли статьи, посвященные вопросам, явлениям или событиям, особенно взволновавшим писателя в последние годы.


Обман и чудачества под видом науки

Состояние лженауки на середину двадцатого века с точки зрения науки США  .


Рекомендуем почитать
Загадка падающей кошки и фундаментальная физика

Как падающим кошкам всегда удается приземлиться на четыре лапы? Удивительно, сколько времени потребовалось ученым, чтобы ответить на этот вопрос! История изучения этой кошачьей способности почти ровесница самой физики — первая исследовательская работа на тему падающей кошки была опубликована в 1700 г. французом Антуаном Параном, но даже сегодня ученые продолжают находить в ней спорные моменты. В своей увлекательной и остроумной книге физик и заядлый кошатник Грегори Гбур показывает, как попытки понять механику падения кошек помогли разобраться в самых разных задачах в математике, физике, физиологии, неврологии и космической биологии, способствовали развитию фотографии и кинематографа и оказали влияние даже на робототехнику. Поиск ответа на загадку падающей кошки погружает читателей в увлекательный мир науки, из которого они узнают решение головоломки, но также обнаружат, что феномен кошачьего выверта по-прежнему вызывает горячие споры ученых. Автор убежден, что чем больше мы исследуем поведение этих животных, тем больше сюрпризов они нам преподносят.


Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали

Обладатель ученой степени в области теоретической химической физики, старший научный сотрудник исследовательской группы по разработке новых лекарств Скотт Бембенек в лучших традициях популярной литературы рассказывает, как рождались и развивались научные теории. Эта книга — уникальное сочетание науки, истории и биографии. Она доступным языком рассказывает историю науки от самых ранних научных вопросов в истории человечества, не жертвуя точностью и корректностью фактов. Читатель увидит: — как энергия, энтропия, атомы и квантовая механика, составляющие основу нашей Вселенной, управляют миром, в котором мы живем; — какой трудный путь прошло человечество, чтобы открыть законы физических явлений; — как научные открытия (и связанные с ними ученые) сформировали мир, каким мы его знаем сегодня.


Гонка за Нобелем. История о космологии, амбициях и высшей научной награде

Инсайдерская история о том, как ученые пытались открыть одну из главных тайн космологии и сбились с пути, обольщенные блеском Нобелевского золота. Каково это — быть очевидцем Большого взрыва? В 2014 году астрономы, вооруженные самым мощным в истории наземным радиотелескопом BICEP2, сочли, что увидели искру, воспламенившую Большой взрыв. Миллионы человек по всему миру смотрели прямую трансляцию пресс-конференции из Гарвардского университета, на которой было объявлено об этом эпохальном открытии.


Страх физики. Сферический конь в вакууме

Легендарная книга Лоуренса Краусса переведена на 12 языков мира и написана для людей, мало или совсем не знакомых с физикой, чтобы они смогли победить свой страх перед этой наукой. «Страх физики» — живой, непосредственный, непочтительный и увлекательный рассказ обо всем, от кипения воды до основ существования Вселенной. Книга наполнена забавными историями и наглядными примерами, позволяющими разобраться в самых сложных хитросплетениях современных научных теорий.


Атом урана — новый источник энергии

Статья опубликована в журнале «Огонек», № 35 (954), 1945.


Резерфорд

Книга Д.Данина посвящена величайшему физику-экспериментатору двадцатого столетия Эрнесту Резерфорду (1871–1937).