Этот правый, левый мир - [57]

Шрифт
Интервал

себя странно асимметричным образом, когда мы помещаем ее над проволокой, несущей ток или под ней. Хотя мы не можем установить, каким полюсам соответствуют концы намагниченной стрелки, даже исследуя их под микроскопом, тем не менее совершенно ясно, что один полюс является северным, а другой — южным. Очевидно, что какая-то разница между полюсами существует, иначе почему бы одноименные полюсы отталкивались, а разноименные притягивались. Если мы закрасим северный полюс магнитной стрелки красной краской, то именно красный конец всегда будет указывать налево, если мы расположим стрелку над проволокой с током, текущим от нас. Как можно объяснить эту кажущуюся асимметрию, которая так потрясла Маха, и все же утверждать, что электромагнитные поля в основе своей симметричны?

Полный ответ на этот вопрос не был получен вплоть до XX столетия, когда физики обнаружили, что магнит обладает известными нам свойствами вследствие круговых движений заряженных частиц внутри самого магнита. Чтобы пояснить это, остановимся вкратце на строении атомов. Рассмотрим так называемую модель атома Бора, построенную на основе теоретической работы великого датского физика Нильса Бора (1885— 1962). Ныне известно, что модель Бора — всего лишь грубое приближение. «Это, — по словам Дж. Гамова, — атом, с которого спущены все шкуры, так что остался один скелет». Эти «шкуры» атома можно подробно описать только с помощью сложного математического аппарата современной квантовой теории. Тем не менее модель Бора до сих пор приносит огромную пользу, сводя в примерную, схематическую картину все, что известно об атомной структуре.

В модели атома Бора вокруг ядра по орбитам движутся электроны — один или несколько, — сгруппированные в оболочки. Каждый электрон несет единичный заряд (квант) отрицательного электричества. Обычно атом находится в незаряженном состоянии, когда число электронов равняется числу протонов в ядре. Каждый протон несет квант положительного заряда. Кроме того, в ядре могут находиться один или несколько нейтронов — незаряженных частиц.

На рис. 48 изображен простейший из атомов — атом водорода. Ядро состоит из одного положительно заряженного протона. Вокруг него обращается отрицательно заряженный электрон. Если в ядре, кроме протона, находится еще один нейтрон, то мы имеем один из изотопов водорода (рис. 49). (Изотоп — это одна из форм элемента, получающаяся при изменении числа нейтронов в ядре.) Этот изотоп называется дейтерием, поскольку у него в ядре две частицы. Добавление нейтрона утяжеляет ядро, по этой причине дейтерий часто называют тяжелым водородом.

Рис. 48. Атом водорода.
Рис. 49. Атом дейтерия — тяжелого водорода.
Рис. 50. Атом гелия.

На рис. 50 приведена схема следующего простого атома — гелия. В обычной своей форме его ядро содержит два протона и два нейтрона. Вокруг ядра вращаются два электрона.

Поскольку атом имеет приближенно сферическое строение, его удобнее всего представить в виде крошечного шарика. «Для некоторых учителей атом всегда остается мячиком, — говорил физик Сэмюэл Гаудсмит. — Зимой это баскетбольный мяч, весной — бейсбольный, а в остальное время года — шарик для настольного тенниса. Эти объяснения об атоме столь же беспомощны, как изображение бога стариком с бородой на облаке».

Это высказывание Гаудсмита напоминает о том, что модели дают лишь грубо приближенную картину реальности. С другой стороны, без них трудно было бы обойтись. Химики до сих пор изображают молекулы диаграммами, где сложные валентные связи представлены черточками; по этой же причине физики продолжают говорить об атоме, пользуясь представлениями модели Бора. Это удобное символическое сокращение. Почему бы и не назвать атом шариком? В конце концов, что такое шарик? В обычном языке это любой предмет примерно сферической формы. Раз смысл этого слова так широк — им можно назвать и футбольный мяч, и яблоко, и скомканный носовой платок, — то почему бы не применить его для описания шарообразного строения атома, хотя точно описать его электронное «облако» можно лишь с помощью сложных понятий теории вероятностей.

Электрон, вращающийся вокруг ядра, это движущийся отрицательный электрический заряд. Его движение приводит к появлению магнитного поля, проходящего через центр атома и перпендикулярного плоскости электронной орбиты. Это поле называется орбитальным магнитным моментом электрона. Кроме орбитального движения, у электрона есть еще одно свойство, называемое спином. (Доктор Гаудсмит, высказывание которого мы цитировали выше, принадлежит к числу тех, кто открыл существование спина.) В модели Бора спин можно представлять себе как вращение электрона вокруг оси, проходящей через его центр, — точно так же Земля на своем пути вокруг Солнца вращается вокруг собственной оси. Собственное вращение электрона также создает микроскопическое магнитное поле, направление которого совпадает с осью вращения. Так получается спиновый магнитный момент электрона.

На рис. 51 показана магнитная ось орбитального магнитного момента электрона. Северным называется тот ее конец, с которого кажется, что электрон вращается вокруг ядра по часовой стрелке. На рис. 52 изображена ось магнитного поля электронного спина. И опять-таки северный ее конец выбран так, что если смотреть с этого конца на электрон, то будет видно, что он вращается вокруг собственной оси по часовой стрелке. В обоих случаях названия полюсов выбираются в соответствии с обычным правилом левой руки. Физики предпочитают обозначать северное направление знаком плюс, а южное — знаком минус, но, поскольку наша книжка не научная монография, мы будем придерживаться более привычных названий.


Еще от автора Мартин Гарднер
Математические головоломки и развлечения

Книга известного американского популяризатора науки М. Гарднера содержит множество занимательных задач и головоломок из самых различных областей математики. Благодаря удачному подбору материла, необычной форме его подачи и тонкому юмору автора она не только доставит удовольствие любителям математики, желающим с пользой провести свой досуг, но и может быть полезной преподавателям математики школ и колледжей в их работе.


Есть идея!

Книга известного американского популяризатора науки Mapтина Гарднера, посвященная поиску удачных идей для решений задач из области комбинаторики, геометрии, логики, теории чисел и игр со словами.Рассчитана на самый широкий круг читателей.


Математические чудеса и тайны

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Остров пяти красок

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Теория относительности для миллионов

Книга Гарднера — это популярное изложение специальной и общей теории относительности, действительно рассчитанное на миллионы читателей.Увлекательно и доступно написанная, она будет понятна всем, начиная со школьников старших классов. Особо следует отметить прекрасные иллюстрации. Благодаря им книга похожа на альбом под названием «Теория относительности в картинках».Впрочем, именно такой и должна быть популярная книга.


Когда ты была рыбкой, головастиком - я...

      Имя Мартина Гарднера (р. 1914) хорошо известно в России. За свою долгую жизнь он написал более 70 книг, ставших популярными во всем мире, многие из них издавались и на русском языке. Гарднер — автор огромного количества статей, посвященных математике (на протяжении 25 лет он вел колонку математических игр и фокусов в журнале «Scientific America»), а также фантастических рассказов и эссе на самые разные темы. В сборник «Когда ты была рыбкой, головастиком — я…» вошли статьи, посвященные вопросам, явлениям или событиям, особенно взволновавшим писателя в последние годы.


Рекомендуем почитать
Покоренный электрон

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания

Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Климатическая наука: наблюдения и модели

Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.