Этот «цифровой» физический мир - [72]

Шрифт
Интервал

» [К5]. Будь концентрация атомов в межпланетном пространстве на порядок больше – Солнышко нас сожгло бы. Вот, смотрите: когда большая комета проходила между Солнцем и Землёй и достаточно сильно «газила», её хвост, направленный от Солнца, формировал створ с повышенной концентрацией вещества. Через этот створ Солнце припекало Землю сильнее, чем обычно, что вызывало всплеск климатических аномалий и стихийных бедствий. Похоже, что идущая из глубины веков слава о кометах, как о предвестниках несчастий и катаклизмов, основана не на суевериях, а на реальных причинно-следственных связях.

Но эта история – так сказать, дела давно минувших дней. А есть ли что-нибудь посовременнее, с переднего края науки и техники? А как же! Это – поучительная история о том, как позорно провалилась затея поражать лазерными лучами космические объекты. Ведь сделали образцы боевых газодинамических лазеров, которые прожигают броню и сшибают крылатые ракеты. Правда, это у них получается вблизи поверхности Земли, в условиях стандартной атмосферы. Если исходить из концепции летящих фотонов, то в космосе эти лазеры должны справляться с боевыми задачами ещё лучше. Ан нет. Это только в фильмах и компьютерных играх, фабрикуемых по тематике «звёздных войн», космические корабли в клочья разносятся лазерными лучами. А в реальности оказывается, что лазерный луч, который сквозь воздух прожигает броню, в космосе едва справляется со смехотворной задачей: выведением из строя светочувствительных элементов у спутника-шпиона. Помните, дорогой читатель, был период, когда в средствах массовой информации центральной темой была тема про Стратегическую оборонную инициативу США (СОИ)? Говорили-говорили про эту инициативу, а потом вдруг – раз! – и всё моментально стихло. А позже по центральному телевидению, в программе «Время», прошёл коротенький сюжет: на показательных испытаниях космического боевого лазера, попавший под его луч макет боеголовки и вправду разнесло в клочья – но это оттого, что бравые американские вояки предусмотрительно установили в нём взрывное устройство, и в нужный момент нажали на кнопочку. По-честному у них не получалось: что-то мешало боевым фотонам лететь в космическом вакууме так же лихо, как и вблизи поверхности Земли. Кстати, вопрос о том, почему боевые лазеры не оправдали надежд в космосе, поднимался на специализированных форумах в Интернете. И, знаете, такую постановку вопроса воспринимали серьёзно! Толпа адвокатов начинала отвечать на этот вопрос, изобретая причины получившейся неудачи. Вот, например, одна из их придумок: боеголовка в полёте, видите ли, вращается, поэтому лазерное пятно перемещается по её поверхности, вот лазер её и «не берёт». Ну, прямо незадача: склепали стратегический оборонный лазер, вывели его в космос… и всё рухнуло к чёртовой матери! Никто на переднем крае науки и техники не мог предвидеть, что боеголовка в полёте вращаться будет!

Вот и верь после этого академикам, что они «пропускают сквозь сверхвысокий вакуум лазерные интенсивности»! В космосе-то, к изумлению академиков, это не получается. Но нельзя же им признаваться в том, что они совершенно не понимают, что такое свет!

3.8. К чему же «привязана» скорость света?

Как мы излагали выше (1.6), иерархия частотных воронок задаёт систему разграниченных в пространстве областей «инерциальной привязки» для механических явлений. В частности, по отношению к местному участку частотного склона определяется локально-абсолютная скорость тела, которая имеет чёткий физический смысл: от квадрата именно этой скорости зависит «истинная» кинетическая энергия тела, которая участвует в тех или иных превращениях энергии – всегда происходящих однозначно (1.6).

Уместен вопрос: а задана ли «инерциальная привязка» для скорости распространения света? Мы отвечаем на этот вопрос утвердительно. И нам представляется, что принцип, по которому организована «инерциальная привязка» для скорости света, совпадает с тем, по которому она организована для локально-абсолютных скоростей физических тел. А именно: фазовая скорость света, т.е., в нашей модели, скорость продвижения «поисковых волн» при работе Навигатора (), является изотропной константой c по отношению к местному участку частотного склона. Из этого принципа следуют все остальные наблюдаемые проявления поведения скоростей света. Мы говорим «скоростей», потому что кроме фазовой скорости, с которой продвигается «поисковая волна» по пространству, у света есть ещё групповая скорость, с которой продвигается световая энергия – по цепочке атомов.

Смотрите: в случае упругой волны – например, звуковой – её скорость определяется упругими свойствами вещественной среды, поэтому скорость волны «привязана» к этой среде. Так, если звук распространяется в ламинарном потоке жидкости, текущем по трубе, то звук «сносится» этим потоком, и скорость звука относительно трубы равна сумме скорости потока жидкости в трубе и скорости звука в покоящейся жидкости. Что же касается «поисковой волны», то она является не физической реальностью, а программной, и скорость её продвижения в пространстве между атомами никак не «привязана» к этим атомам. Стартовав с атома-отправителя, «поисковая волна» движется со скоростью, которая определяется лишь быстродействием работы Навигатора, причём скорость этой «программной» волны привязана к программной же реальности – местному участку частотного склона, задающего инерциальный фон. Поведение же скорости продвижения кванта световой энергии по цепочке атомов – это следствие поведения скорости «поисковой волны». При том, что перебросы кванта энергии возбуждения с атома на атом осуществляются программными манипуляциями, практически, мгновенно (


Рекомендуем почитать
Мировые загадки сегодня

Существует ли окружающий мир и таков ли он, каким нам представляется? Что такое материя и движение? Есть ли целесообразность в природе? Является ли возникновение сознания неразрешимой загадкой? Эти и многие другие вопросы разбирает в своей книге известный популяризатор науки писатель Игорь Адабашев. Книга убедительно показывает, что человек способен познать окружающий мир, что «мировые загадки», о которых говорят христианские богословы и философы-идеалисты, не что иное, как еще не познанные, но вполне познаваемые явления природы.


Этот правый, левый мир

Симметрия и асимметрия в математике, искусстве, философии, астрономии, зоологии, анатомии, химии, ядерной физике — предмет волнующих открытий для всех любознательных. Почему у нарвала бивень имеет левую «резьбу»? Будут ли марсианские асимметричные вирусы пагубны для космонавтов, а земные — для марсиан? Что такое «бустрафедон» и какое это отношение имеет к двум крупнейшим научным открытиям последнего десятилетия — ниспровержению физиками закона сохранения четности и открытию биологами винтообразного строения молекулы, которая несет генетический код? Об этом и еще очень многом из правого, левого мира вы сможете прочитать в этой живой и занимательной книге.


Физика элементарных частиц материи

Мировое пространство – мир. Мир – это бесконечное пространство во всех измерениях, это объективная реальность ни от чего не зависящая, существующая сама по себе. Мировое пространство – это безграничная, бесконечная пустота. Космос – это пространство между отдельными космическими объектами.


Неопределенный электрический объект. Ампер. Классическая электродинамика.

Андре-Мари Ампер создал электродинамику — науку, изучающую связи между электричеством и магнетизмом. Его математически строгое описание этих связей привело Дж. П. Максвелла к революционным открытиям в данной области. Ампер, родившийся в предреволюционной Франции, изобрел также электрический телеграф, гальванометр и — наряду с другими исследователями — электромагнит. Он дошел и до теории электрона — «электрического объекта», — но развитие науки в то время не позволило совершить это открытие. Плоды трудов Ампера лежат и в таких областях, как химия, философия, поэзия, а также математика — к этой науке он относился с особым вниманием и часто применял ее в своей работе.


Законы движения

Книга М. Ивановского «Законы движения» знакомит читателей с основными законами механики и с историей их открытия. Наряду с этим в ней рассказано о жизни и деятельности великих ученых Аристотеля, Галилея и Ньютона.Книга рассчитана на школьников среднего возраста.Ввиду скоропостижной смерти автора рукопись осталась незаконченной. Работа по подготовке ее к печати была проведена Б. И. Смагиным. При этом IV, V, VI и VII главы подверглись существенной переработке. Материал этих глав исправлен и дополнен новыми разделами.


Золотое правило

В небольшой по объему книге «Золотое правило» М. Ивановский в занимательней форме сообщает читателю интересные сведения из истории, а также из жизни великого ученого древности — Архимеда.Наряду с историческими сведениями автор, воспользовавшись удачным литературным приемом, знакомит школьников с устройством и действием целого ряда простых механизмов — ворота, лебедки, полиспаста, дифференциального ворота и др. И хотя некоторые из этих механизмов не изучаются в школьном курсе физики, они в описании автора становятся вполне понятными для учащихся VI–VII классов.М.