Если бы числа могли говорить. Гаусс. Теория чисел - [6]
Треугольное число — это число, количество единиц которого может быть представлено в форме равностороннего треугольника (по умолчанию было решено, что первое треугольное число — 1). Понятие треугольного числа было введено Пифагором, который изучил некоторые их свойства (пифагорейцев очень интересовали эстетические свойства чисел). На рисунке показаны шесть первых треугольных чисел.
Если внимательно посмотреть на первые треугольные числа, можно увидеть, что они совпадают со значением ряда T>n суммы п первых натуральных чисел. Очевидно, что это не случайность, поскольку при построении треугольного числа в каждом ряду на один элемент больше, чем в предыдущем, и первый ряд начинается с 1. Следовательно, узнать, является ли какое-либо число треугольным, равносильно тому, чтобы проверить, совпадает ли это число со значением T>n для некоторого n. Итак, каждое треугольное число T>n определяется следующей формулой:
T>n = n(n+1)/2.
Треугольное число — это число,которое можно представить в виде треугольника. Здесь указаны шесть первых таких чисел. Гаусс открыл, что любое целое положительное число может быть представлено в виде суммы, самое большее, трех треугольных чисел.
Проблема суммы, предложенная Гауссу, была равносильной тому, чтобы вычислить треугольное число, ряд основания которого был бы равен 100. Лучший способ сделать это, не вдаваясь в математические дебри, это взять другой равный треугольник, перевернуть его и поместить рядом с первым. В этом случае у нас получится прямоугольник в 100 единиц длиной и 101 шириной. Чтобы трансформация была понятной, предварительно нужно заменить равносторонние треугольники прямоугольными, просто передвинув ряды. Когда мы получили прямоугольник, вычислить общее число единиц очень просто, поскольку речь идет о произведении его сторон: 100 х 101 = 10100. Следовательно, один треугольник содержит половину единиц, то есть 5050. Следующий рисунок помогает понять построение прямоугольника на основе двух равных треугольных чисел. Ради компактности будем работать с Т>3 вместо Т>100, поскольку это не влияет на ход рассуждений. Обозначим через X единицы первого треугольного числа и через Z — единицы второго.
Как мы видим, получается прямоугольник 4x3, что и следовало ожидать. В целом сумма двух треугольных чисел Tn порождает прямоугольник n · (n + 1), так что для того, чтобы узнать число элементов T>n, достаточно разделить его на 2 — то есть снова получить, уже в результате других рассуждений, формулу построения треугольных чисел:
T>n = n(n+1)/2.
Сложно сказать точно, какое из этих двух рассуждений применил юный Гаусс. Мальчик с раннего возраста проявлял интерес к треугольным числам и их свойствам, поэтому, возможно, он понял, что требуется вычислить треугольное число с основанием в 100 единиц. Так, в его математическом дневнике есть запись от 18 июля 1796 года: «Эврика! num = Δ + Δ + Δ», что в переводе с зашифрованного языка Гаусса означает одну из его самых известных теорем, в которой утверждается, что любое целое положительное число может быть представлено в виде суммы самое большее трех треугольных чисел. Следует обратить внимание: эта теорема не предполагает, что треугольные числа должны быть разными и что их обязательно должно быть три (например, 20 = 10 + 10). Три — это лишь максимальное число треугольных чисел, но может быть достаточно и двух, а если искомое число само треугольное, то для его представления достаточно одного числа — его самого. Радость от открытия была более чем оправданной. Молодой Гаусс ответил на один из вызовов старого Ферма (1601-1665). И это был не просто вызов... Даже великий Леонард Эйлер (1707-1783) не смог справиться с этой задачей. Далее мы поговорим о Ферма и Эйлере более подробно, потому что в их работах снова появятся связи с трудами Гаусса — первого человека в истории, который ответил на одну из знаменитых гипотез Ферма. В математике гипотеза — это просто результат, который, похоже, является верным, но который не удалось доказать в строгом аналитическом виде, и при этом для него не был найден и опровергающий контрпример.
Этот результат был опубликован Гауссом только в 1801 году в книге «Арифметические исследования». Ученый не публиковал свои открытия сразу после их совершения, а ждал несколько лет, пока у него не накопится достаточно материала для издания целой книги. Эта его манера стала источником споров о первенстве Гаусса относительно некоторых математических открытий. Действительно, существуют результаты, которые он нашел первым, но сохранил в тайне, и опубликованы они были другими математиками. Конечно, это не означает, что открытия Гаусса были украдены, просто другие ученые приходили к похожим или таким же выводам независимо от героя нашей книги и ничего не зная о его успехах. Многие из этих споров оставались нерешенными долгие годы, пока не появилась возможность изучить всю переписку и научные записи Гаусса.
Теорема о треугольных числах напоминает знаменитую гипотезу Гольдбаха, сформулированную Кристианом Гольдбахом (1690-1764). В ней утверждается, что любое четное натуральное число, большее 2, может быть выражено в качестве суммы двух простых чисел. А это означает, что любое нечетное число, большее 5, может быть выражено в качестве суммы трех или меньше простых, поскольку если оно само по себе не простое, достаточно сложить простое число 3 и четное число, меньшее этого числа на три единицы. Однако Гауссу удалось доказать свой результат, в то время как гипотеза Гольдбаха все еще не доказана в строгом виде. Этот пример объясняет, почему в математике придается такое значение доказательству. Гипотеза Гольдбаха была проверена для всех чисел, меньших 10
Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии — открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.
Автор множества бестселлеров палеонтолог Дональд Протеро превратил научное описание двадцати пяти знаменитых прекрасно сохранившихся окаменелостей в увлекательную историю развития жизни на Земле. Двадцать пять окаменелостей, о которых идет речь в этой книге, демонстрируют жизнь во всем эволюционном великолепии, показывая, как один вид превращается в другой. Мы видим все многообразие вымерших растений и животных — от микроскопических до гигантских размеров. Мы расскажем вам о фантастических сухопутных и морских существах, которые не имеют аналогов в современной природе: первые трилобиты, гигантские акулы, огромные морские рептилии и пернатые динозавры, первые птицы, ходячие киты, гигантские безрогие носороги и австралопитек «Люси».
К созданию невозможного вечного двигателя одни изобретатели приступали, игнорируя законы природы, другие же, не зная их, действовали на авось. В наше время, в эпоху расцвета науки и техники, едва ли есть серьёзные изобретатели, которых увлекала бы бесплодная в своей основе идея создания вечного двигателя.
Легендарная книга Лоуренса Краусса переведена на 12 языков мира и написана для людей, мало или совсем не знакомых с физикой, чтобы они смогли победить свой страх перед этой наукой. «Страх физики» — живой, непосредственный, непочтительный и увлекательный рассказ обо всем, от кипения воды до основ существования Вселенной. Книга наполнена забавными историями и наглядными примерами, позволяющими разобраться в самых сложных хитросплетениях современных научных теорий.
Если наша планета не уникальна, то вероятность повсеместного существования разумной жизни огромна. Более того, за всю историю человечества у инопланетян было достаточно времени, чтобы дать о себе знать. Так где же они? Какие они? И если мы найдем их, то чем это обернется? Ответы на эти вопросы ищут ученые самых разных профессий – астрономы, физики, космологи, биологи, антропологи, исследуя все аспекты проблемы. Это и поиск планет и спутников, на которых вероятна жизнь, и возможное устройство чужого сознания, и истории с похищениями инопланетянами, и изображение «чужих» в научной фантастике и кино.
Книга немецкого историка, востоковеда, тюрколога, специалиста по истории монголов Бертольда Шпулера посвящена истории и культуре Золотой Орды. Опираясь на широкий круг источников и литературы, автор исследует широкий спектр вопросов: помимо политической истории он рассматривает религиозные отношения, государственный строй, право, военное дело, экономику, искусство, питание и одежду.