Эпигенетика - [32]

Шрифт
Интервал

6. Различие между эухроматином и гетерохроматином

В этом обзоре эухроматин и гетерохроматин обсуждались раздельно, хотя мы признаем, что существуют множественные формы хроматинов обоих классов. Эухроматин, или «активный» хроматин, состоит в основном из кодирующих последовательностей, составляющих лишь небольшую долю (менее 4 %) генома млекопитающих Какие же молекулярные сигналы маркируют тогда кодирующие последовательности, обладающие потенциалом для продуктивной транскрипции, и каким образом структура хроматина вносит свой вклад в этот процесс? Обширная литература позволяет предполагать, что эухроматин существует в «открытой» (декомпактизированной), более чувствительной к нуклеазам конфигурации, делающей его «готовым» к экспрессии генов, хотя и не обязатаельно транскрипционно активным. Некоторые из этих генов экспрессируются повсеместно (гены «домашнего хозяйства»); другие регулируются ходом развития или индуцируются в ответ на внешние стрессорные факторы. Транскрипцию генов включает совместное действие избранных сА-действующих нуклеотидных последовательностей ДНК (промоторов, энхансеров и участков контроля локусов), связанных с комбинациями trans-действующих факторов, вместе с РНК-полимеразой и ассоциированными факторами (Sims et al., 2004). В совокупности эти факторы подверглись жесткому отбору в ходе эволюции, чтобы инструментовать сложные ряды биохимических реакций, которые должны происходить в «правильной» пространственной и временной последовательности. Обеспечивает ли хроматин «систему индексирования», гарантирующую, что вышеописанная машинерия сможет получить доступ к своим целевым последовательностям в клетках соответствующего типа?

На уровне ДНК соседние с промоторами области, богатые АТ, часто лишены нуклеосом и могут существовать в жесткой, неканонической конфигурации ДНК (В-форма), способствующей размещению транскрипционного фактора (TF) (Mito et al., 2005; Sekinger et al., 2005). Однако размещения TF недостаточно для обеспечения транскрипции. Рекрутирование механизмов [machines] ремоделинга нуклеосом посредством индукции активирующих модификаций гистонов (например, ацетилирование и метилирование H3К4) облегчает взаимодействие с механизмами транскрипции; в настоящее время определяют, каким образом это происходит (рис. 3.9 и глава 10). Замена вытесненных гистонов гистоновыми вариантами, после того как механизм транскрипции распутал и транскрибировал хроматиновую фибриллу, обеспечивает целостность хроматиновой матрицы (Ahmad and Henikoff, 2002). Однако образование полностью созревших иРНК также требует протекания посттранскрипционных процессов, в том числе сплайсинга, полиаденилирования и экспорта из ядра. Таким образом, собирательный термин «эухроматин» скорее всего обозначает сложное состояние (состояния) хроматина, охватывающее динамичную и сложную смесь механизмов [machines], тесно взаимодействующих друг с другом и с хроматиновой фибриллой и предназначенных для осуществления транскрипции функциональных РНК. Выяснение «правил», определяющих, каким образом, в самом общем смысле, эти «активирующие механизмы» [«activating machinery»] взаимодействуют с аппаратом транскрипции, а также с хроматиновой матрицей — волнующая область современных исследований, хотя в силу динамичной природы матрицы эту область, строго говоря, можно относить не к эпигенетике, а, скорее, к исследованиям динамики транскрипции и хроматина.

Что же тогда обозначает термин «гетерохроматин»? Хотя в исторической ретроспективе он изучен хуже, чем эухроматин, новые открытия заставляют считать, что гетерохроматин играет критически важную роль в организации и правильном функционировании геномов, начиная с дрожжей и кончая человеком (хотя у S. cerevisiae особая форма гетерохроматина). Его потенциальное значение подчеркивается тем фактом, что 96 % генома млекопитающих состоит из некодирующих и повторяющихся последовательностей. Новые открытия, касающиеся механизмов формирования гетерохроматина, выявили неожиданные вещи. Например, транскрипция, неспецифичная по отношению к последовательности и дающая двуспиральную РНК (dsRNA), подвержена сайленсингу по механизму, подобному РНК-интерференции (RNAi) (см. раздел 10). Образование таких dsRNAs действует как «сигнал тревоги», отражая тот факт, что соответствующая нуклеотидная последовательность ДНК не может генерировать функциональный продукт или инвазирвана РНК-транспозонами или вирусами. Эта dsRNA подвергается затем процессингу с помощью Dicer и нацеливается на хроматин комплексами, предназначенными для инициации каскада событий, ведущих к формированию гетерохроматина. В результате использования ряда модельных систем был достигнут заметный прогресс в анализе того, что, по-видимому, является высококонсервативным метаболическим путем, ведущим к «запертому» [«locked-down»] состоянию гетерохроматина. Хотя точная последовательность и детали событий могут варьировать, этот общий путь включает деацетилирование гистоновых «хвостов», метилирование специфических остатков лизина (например, H3К9), рекрутирование ассоциированных с гетерохроматином белков (например, НР1) и метилирование ДНК (рис. 3.9). Вполне вероятно, что секвестрирование отдельных участков генома в репрессивных ядерных доменах или территориях может усилить формирование гетерохроматина. Интересно, что все большее количество данных позволяет предполагать, что гетерохроматин может быть «состоянием по умолчанию», по крайней мере у высших организмов, и что присутствие сильного промотора или энхансера, продуцирующего эффективный транскрипт, может «пересилить» гетерохроматин Общие концепции сборки гетерохроматина приложимы, по-видимому, даже к низшим эукариотам. В число основных особенностей входят гипоацетилированные «хвосты» гистонов, что сопровождается связыванием чувствительных к ацетилированию белков гетерохроматина (например, белки SIR; детали см. в главе 4). В зависимости от вида грибов (например, почкующиеся vs. дробянковые дрожжи) наблюдаются различные объемы метилирования гистонов и HP 1-подобных белков. Даже при том, что эти геномы в большей степени настроены на общее, «по умолчанию», состояние готовности к транскрипции, имеются некоторые гетерохроматин-подобные районы генома (локусы спаривания, теломеры, центромеры и т. д.), которые способны супрессировать транскрипцию генов и генетическую рекомбинацию, когда тестируемые гены оказываются в этом новом соседстве.


Рекомендуем почитать
Сила обоняния. Как умение распознавать запахи формирует память, предсказывает болезни и влияет на нашу жизнь

Обоняние оказывает наиболее сильное влияние на наши эмоции по сравнению с другими чувствами и контролирует наше поведение значительнее, чем мы предполагаем. Нейробиолог, профессор анатомии Университета Квебека в Труа-Ривьере (Канада) Иоганнес Фраснелли доступно объясняет, каким образом тренировка обоняния влияет на мозг человека, как меняют наше обоняние тревога и депрессия, как связана потеря обоняния с нейрогенеративными заболеваниями, а также затрагивает ряд других любопытных тем – не только из области нейробиологии, анатомии и психологии, но и из сферы пищевых предпочтений жителей разных стран, открывая перед нами интереснейший мир запахов и ощущений. «Несмотря на то что мы обоняем всегда – собственно, мы воспринимаем запахи еще до рождения, – и несмотря на то что обоняние имеет непосредственную “проводную” связь с лимбической системой, а значит, с нашим чувственным миром, люди в большинстве своем считают обоняние наименее значимым из пяти чувств.


186 суток на орбите (спросите у космонавта)

Тим Пик увлекается марафонским бегом, альпинизмом и лыжным спортом, воспитывает сына и ходит в спелеологичес кие походы в Западном Суссексе. А еще Тим прошел отбор в программу Европейского космического агентства (EKA). На шесть мест для полетов в открытый космос претендовало более 8000 участников… А сегодня Тим Пик – единственный космонавт во всей Великобритании. 15 декабря 2015 года в 14:03 Тим Пик в должности второго борт инженера отправился с космодрома Байконур к МКС, чтобы провести на орбите 186 суток и узнать все о том, как жить и выживать в космосе. Что чувствовал Тим, вращаясь вокруг Земли быстрее, чем ускоряющаяся пуля? Каково это есть, спать и вообще жить в космосе? Что делать, когда нечего делать? Как вообще обстоят дела в современном космосе? Вернувшись домой, Тим решил поделиться всем пережитым с землянами.


Знание-сила, 2009 № 06 (984)

Ежемесячный научно-популярный и научно-художественный журнал.


Древнее оледенение и жизнь

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


50 книг, изменившие литературу

Серия книг «Это важно знать» представляет собой иллюстрированные издания по ключевым областям знаний – 50 фактов, идей, вещей, людей, которые коренным образом повлияли на ход истории. Эти книги дают прекрасную возможность ликвидировать пробелы в знаниях, освежить или оценить уже известные вам факты с новой точки зрения. Все, что вы хотели знать, но боялись спросить! В этой книге – 50 захватывающих рассказов о самых известных произведениях, созданных великими писателями и поэтами!В этом сборнике вы найдете статьи, посвященные наиболее значимым и ценным произведениям мировой литературы, которые обязательно должен прочитать каждый образованный человек: «Одиссея» Гомера, «Декамерон» Джованни Боккаччо, «Божественная комедия» Данте Алигьери, «Гамлет» Уильяма Шекспира, «Отцы и дети» Ивана Тургенева, «Война и мир» Льва Толстого, «Мы» Евгения Замятина, «100 лет одиночества» Гарсия Маркеса и многие другие.


Происхождение домашних животных

В брошюре академика Б. М. Завадовского рассказывается как произошли домашние животные.