Эмбрионы в глубинах времени - [67]
Gayon, J. 2000. History of the concept of allometry. American Zoologist 40: 748-58.
Gee, H. 2001. Deep Time: Cladistics, the Revolution in Evolution. London: Fourth Estate.
Giannini, N., A. Goswami, and M. R. Sánchez-Villagra. 2006. Development of integumentary structures in Rousettus amplexicaudatus (Mammalia: Chiroptera: Pteropodidae) during late-embryonic and fetal stages. Journal of Mammalogy 87: 993-1001.
Gilbert, S. F., and D. Epel. 2008. Ecological Developmental Biology. Sunderland, MA: Sinauer Associates.
Gingerich, P. D., M. ul-Haq, W. von Koenigswald, W. J. Sanders, B. H. Smith, and I. S. Zalmout. 2009. New protocetid whale from the Middle Eocene of Pakistan: Birth on land, precocial development, and sexual dimorphism. PLoS ONE 4: e4366.
Göbbel, L., and R. Schultka. 2002. Das wissenschaftliche Programm von Johann Friedrich Meckel d. J. (1781–1833) und seine Bedeutung für die Entwicklung der Wissenschaft vom Leben. Annals of Anatomy 184: 519-22.
Godfrey, L. R., K. E. Samonds, P. C. Wright, and S. J. King. 2005. Schultz’s unruly rule: Dental developmental sequences and schedules in small-bodied, folivorous lemurs. Folia Primatologica 6: 77–99.
Goin, F. J., M. A. Abello, and L. Chornogubsky. 2010. Middle Tertiary marsupials from central Patagonia (early Oligocene of Gran Barranca): Understanding South America’s Grande Coupure. In R. H. Madden, A. A. Carlini, M. G. Vucetich, and R. F. Kay, eds., The Paleontology of Gran Barranca: Evolution and Environmental Change through the Middle Cenozoic of Patagonia (pp. 36–47). Cambridge: Cambridge University Press.
Goldschmidt, R. 1933. Some aspects of evolution. Science 15: 539-47.
Gompel, N., and B. Prud’homme. 2009. The causes of repeated genetic evolution. Developmental Biology 332: 36–47.
Goodrich, E. S. 1913. Metameric segmentation and homology. Quarterly Journal of Microscopical Science 59: 227-48.
Gostling, N. J., P. C. J. Donoghue, and S. Bengtson. 2007. The earliest fossil embryos begin to mature. Evolution and Development 9: 206-7.
Gostling, N. J., C. W. Thomas, J. M. Greenwood, X. Dong, S. Bengtson, E. C. Raff, R. A. Raff, B. A. Degnan, M. Stampanoni, and P. C. J. Donoghue. 2008. Deciphering the fossil record of early bilaterian development in the light of experimental taphonomy. Evolution and Development 10: 339-49.
Goswami, A. 2006. Cranial modularity shifts during mammalian evolution. American Naturalist 168: 270-80.
Goswami, A., N. Milne, and S. Wroe. 2011. Biting through constraints: Cranial morphology, disparity, and convergence across living and fossil carnivorous mammals. Proceedings of the Royal Society of London B, Biological Sciences, 278: 1831-39.
Gould, S. J. 1974. The origin and function of “bizarre” structures: Antler size and skull size in the “Irish elk,” Megaloceros giganteus. Evolution 28: 191–220.
Gould, S. J. 1977. Ontogeny and Phylogeny. Cambridge, MA: Belknap Press.
Gould, S. J. 1988. Time’s Arrow Time’s Cycle. Cambridge, MA: Harvard University Press.
Gould, S. J., and N. Eldredge. 1993. Punctuated equilibrium comes of age. Nature 366: 223-27.
Grande, L., and E. J. Hilton. 2006. An exquisitely preserved skeleton representing a primitive sturgeon from the upper Cretaceous Judith River formation of Montana. Journal of Palaeontology 80: 1-39.
Gray, S. W. 1946. Relative growth in a phylogenetic series and in ontogenetic series of one of its members. American Journal of Science 244: 792–807.
Gregory, T. R. 2005. Genome size evolution in animals. In T. R. Gregory, ed., The Evolution of the Genome (pp. 4-71). Boston: Elsevier Academic Press.
Guthrie, R. D. 2003. Rapid body size decline in Alaskan Pleistocene horses before extinction. Nature 426: 169-71.
Haeckel, E. 1866. Generelle Morphologie der Organismen: allgemeine Grundzüge der organischen Formen-Wissenschaft, mechanisch begründet durch die von C. Darwin reformirte Descendenz-Theorie. Berlin: Reimer.
Haeckel, E. 1874. Anthropogenie oder Entwicklungsgeschichte des Menschen. Leipzig: Engelmann.
Hafner, J. C., and M. S. Hafner. 1988. Heterochrony in rodents. In M. L. McKinney, ed., Heterochrony in Evolution: A Multidisciplinary Approach (pp. 217-35). New York: Plenum Press.
Hall B. K. 1999. Evolutionary Developmental Biology. 2nd ed. New York: Springer.
Hall B. K. 2002. Palaeontology and evolutionary developmental biology: A science of the 19th and 21st centuries. Palaeontology 45: 647-69.
Hall B. K. 2005. Bones and Cartilage. Amsterdam: Elsevier Academic Press.
Hammer, O., and H. Bucher. 2005. Buckman’s first law of covariation: A case of proportionality. Lethaia 38: 67–72.
Harris, M. P., N. Rohner, H. Schwarz, S. Perathoner, P. Konstantinidis, and C. Nüsslein-Volhard. 2008. Zebrafish eda and edar mutants reveal conserved and ancestral roles of ectodysplasin signaling in vertebrates. PLoS Genetics 4: e1000206.
Haug, J. T., A. Maas, and D. Waloszek. 2010. † Henningsmoenicaris scutula, † Sandtorpia vestrogothiensis gen. et sp. nov. and heterochronic events in early crustacean evolution. Earth and Environmental Science Transactions of the Royal Society of Edinburgh
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.