Эмбрионы в глубинах времени - [59]
В главе 7 я указал, что некоторые группы позвоночных обладают очень пластичными генетическими механизмами сегментации, результатом чего становится изменчивое количество позвонков, тогда как другие группы очень консервативны. Аналогичная ситуация имеет место у трилобитов, и Найджел Хьюз, который провёл много исследований в области эволюции их индивидуального развития, документировал примеры значительной пластичности в развитии сегментации у геологически более молодых форм. Если ограничения и существуют, то они не являются незыблемыми.
В ранний период эволюции трилобитов разбиение тела на отделы было неглубоким — все сегменты выглядели более или менее похожими друг на друга. У более поздних трилобитов изменение плана строения тела привело к более ярко выраженному разделению его на отделы. Различные разновидности трилобитов в процессе эволюции независимо приобрели отчётливо выраженную многосегментную хвостовую пластину, состоящую из многочисленных слившихся воедино туловищных сегментов и называемую пигидиумом. Это новшество имело экологическое значение: оно сделало возможным сворачивание тела в капсулообразное защитное положение, когда все мягкие части оказываются эффективно защищёнными. Защита от хищников, вероятнее всего, была главным фактором отбора, стимулирующим эволюцию механизма сворачивания тела.
Сегменты в новом, увеличенном хвостовом отделе обычно чётко отличались от предшествующих туловищных сегментов. У трилобитов с данной особенностью строения количество сегментов стало менее изменчивым. У позвоночных существует аналогичная ситуация. Животные, у которых разделение позвоночника на отделы нечётко выражено или вовсе отсутствует, обладают более изменчивым количеством сегментов. Это наблюдается у змей и китов: и у тех, и у других отсутствует тазовый пояс.
Различие между стабильным и изменчивым количеством сегментов может выглядеть тривиальным фактом. Но оно имеет самое прямое отношение к исследованиям индивидуального развития, поскольку изменчивость — это ключ к эволюционному потенциалу. Пластичность в развитии может быть фактором, который следует рассматривать при исследовании потенциального риска вымирания вида или группы организмов. Исследователи обнаружили, например, что трилобиты, демонстрировали снижение пластичности с течением геологического времени, и есть повод задуматься над тем, какое воздействие это оказало на характер их эволюции — это предмет исследований в настоящее время.
Эволюция трилобитов с течением времени также исследовалась с использованием различных подходов. На протяжении десятилетий многие специалисты пробовали реконструировать части эволюционного древа трилобитов, исследуя особенности строения, сравнивая их у разных видов и далее проводя их числовой анализ. Для этого они используют кладистическую методологию, в который распределение особенностей строения оптимизируется с целью создания «лучшего» эволюционного древа, с применением принципа парсимонии. В основном лучшее из возможных объяснений для совокупности данных представляет собой та топология древа, отражающая главенствующую гипотезу отношений, для которой должно быть сделано наименьшее количество предположений (отсюда «парсимония»>{17}). В процессе кодирования морфологических особенностей в целях анализа можно заметить, что у некоторых видов они стабильны. Но другие особенности могут изменяться в пределах вида — это случаи полиморфизма. В 2007 году Марк Уэбстер опубликовал исследование, в котором он количественно определил степень полиморфизма для 982 видов трилобитов с течением геологического времени и обнаружил, что более древние виды, которые находятся ближе к основанию эволюционного древа трилобитов, проявляли больший полиморфизм, чем поздние, более продвинутые виды. Почему же имеет место эта чёткая закономерность? Она может быть следствием изменений в окружающей среде, которые со временем приводили к различным типам давления отбора. Или она могла быть связанной с «внутренним» сужением системы, управляющей индивидуальным развитием. Но как бы то ни было, важно то, что Уэбстер открыл закономерность, сходную с той, которая в общих чертах наблюдается для количества сегментов в масштабах геологического времени. Во всех этих исследованиях индивидуального развития сквозь призму геологического времени очень важно безошибочное определение видов. В случае с ныне живущими видами, если виды распознаны на основе репродуктивной изоляции, экспериментальными манипуляциями можно проверить эту изоляцию. С другой стороны, виды, определяемые таким образом, невозможно выявить в ископаемом виде. Но таксономия трилобитов имеет под собою твёрдые основания. Исследованы сотни и тысячи экземпляров, и степень изменчивости среди них измерена. Непротиворечивые и воспроизводимые критерии, которые работают применительно к ныне живущим членистоногим, используются для определения морфологических границ видов. Другие группы беспозвоночных также известны по тысячам образцов, и исследования в области палеонтологии развития применительно к ним также являются возможными.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.