Электроны - [44]
Для получения картины переменного тока поступают следующим образом. К одной паре пластин подводят так называемое пилообразное напряжение, кривая которого показана на рис. 4.1.
Если электронный луч находится только под его действием, то пятнышко равномерно движется по экрану, а затем скачком возвращается в исходное положение. Положение пятнышка дает сведения о моменте времени. Если на другую пару пластин наложено изучаемое переменное напряжение, то оно «развернется», совершенно таким же образом, как механическое колебание «разворачивается» с помощью простого устройства, показанного в первой книге.
Сказав «колебание», я не оговорился. Большей частью величины, характеризующие переменный ток, колеблются по тому же гармоническому закону синусоиды, которому подчиняются отклонения маятника от равновесия. Чтобы убедиться в этом, достаточно подключить к осциллографу городской переменный ток.
По вертикали могут быть отложены ток или напряжение. Характеристики тока те же, что и параметры механического колебания. Промежуток времени, после которого картина изменений повторяется, носит, как известно, название периода Т; частота тока ν — величина, обратная периоду, — равна обычно для городского тока 50 колебаниям в секунду.
Когда рассматривается одна синусоида, то выбор начала отсчета времени безразличен. Если же две синусоиды накладываются друг на друга так, как это показано на рис. 4.2, то надо указать, на какую долю периода они смещены по фазе. Фазой называется угол φ = 2π∙(t/T). Так что если кривые сдвинуты по отношению друг к другу на четверть периода, то мы говорим, что они смещены по фазе на 90 градусов, если на восьмую часть периода — то значит на 45 градусов по фазе, и т. д.
Когда идет речь о нескольких синусоидах, сдвинутых по фазе, техники говорят о векторах тока или напряжения. Длина вектора соответствует амплитуде синусоиды, а угол между векторами — сдвигу фаз. Многие технические устройства дают нам не простой синусоидальный ток, а такой, кривая которого является суммой нескольких смещенных синусоид.
Покажем, что простой синусоидальный ток возникает в том случае, если проводящая рамка вращается в однородном магнитном поле с постоянной скоростью.
При произвольном направлении рамки по отношению к силовым линиям магнитный поток, проходящий через контур, равен
Ф = Ф>макс∙sin φ
φ — угол между плоскостью витка и направлением поля.
Этот угол меняется со временем по закону φ = 2π∙(t/T).
Закон электромагнитной индукции позволяет вычислить ЭДС индукции. Запишем выражения магнитных потоков для двух мгновений, отличающихся на очень малый промежуток времени τ:
Разность этих выражений:
Так как τ очень мало, то справедливы следующие приближенные равенства:
ЭДС индукции равна этой разности, отнесенной ко времени. Значит,
Мы доказали, что ЭДС индукции выражается синусоидой, сдвинутой по отношению к синусоиде магнитного потока на 90 градусов. Что касается максимального значения ЭДС индукции — ее амплитуды, то оно пропорционально произведению амплитуды магнитного потока на частоту вращения рамки.
Закон для силы тока получится, если разделить ЭДС индукции на сопротивление цепи. Но мы сделаем грубую ошибку, если приравняем сопротивление переменному току, которое стоит в знаменателе выражения
I>перем =
омическому сопротивлению — той величине, с которой мы имели дело до сих пор: Оказывается, что R>перем определяется не только омическим сопротивлением, но зависит еще от двух параметров цепи: ее индуктивности и включенных в цепь емкостей.
То, что закон Ома усложняется, когда мы переходим от постоянного тока к переменному, показывает следующий простой опыт. На рис. 4.3 изображена цепь тока, проходящего через электрическую лампочку и катушку, в которую можно вставлять железный сердечник. Сначала подключим лампочку к источнику постоянного тока. Будем вдвигать железный, сердечник в катушку и выдвигать его. Никакого эффекта! Сопротивление цепи не меняется, значит и сила тока остается неизменной.
Но повторим этот же опыт для случая, когда цепь подключена к переменному току. Эффектный результат, не правда ли? Теперь лампочка горит ярко, если сердечник не вставлен в катушку, и тускло, если вы вдвинули железо в катушку.
Итак, при неизменном внешнем напряжении, при неизменном омическом сопротивлении (зависящем лишь от материала, длины и сечения проводов) сила тока меняется в зависимости от положения железного сердечника в катушке.
Что это значит?
Мы вспоминаем, что железный сердечник резко увеличивает (в тысячи раз) магнитный поток, проходящий через катушку. В случае переменной ЭДС магнитный поток в катушке все время меняется. Но если без железного сердечника он менялся от нуля до какой-то условной единицы, то при наличии сердечника он будет меняться от нуля до нескольких тысяч единиц.
При изменении магнитного потока силовые линии будут пересекать витки «своей» катушки. В катушке будет возникать ток самоиндукции. Согласно правилу Ленца этот ток будет направлен так, чтобы ослабить эффект, его вызвавший: внешняя ЭДС встречает особую помеху, которой не существовало тогда, когда ток был постоянным. Иными словами, у переменного тока имеется дополнительное сопротивление, обязанное тому, что магнитное поле, пересекая привода своей цепи, создает особую ЭДС, называемую ЭДС самоиндукции, которая ослабляет среднюю силу тока. Это дополнительное сопротивление называется индуктивным.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Переиздание первой части книги Ландау Л. Д. и Китайгородского А. И. «Физика для всех» (Движение, теплота). Цель книги дать читателю в общедоступной форме отчетливое представление об основных идеях и новейших достижениях современной физики. Движение тел рассмотрено с двух точек зрения — наблюдателя в инерциальной и неинерциальной системах координат. Весьма детально изложены закон всемирного тяготения и его применение для расчетов космических скоростей, для интерпретации лунных приливов, для геофизических явлений. Книга рассчитана на самый широкий круг читателей — от впервые знакомящихся с физикой до лиц с высшим образованием, проявляющих интерес к данной науке.
Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики.Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики.Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.
Книга посвящена применению законов теории вероятностей к различным жизненным ситуациям и в разных областях науки. В ней рассказывается, как пользуются законом вероятности физики и кинорежиссеры, селекционеры и юристы, социологи и механики и т.д.
…Борьба против лженауки – это борьба против заблуждений, взятых на вооружение повседневной жизнью. Это борьба против ошибок разума, а не чувств, в отношении которых слово «обман» вообще не имеет смысла…
6 и 9 августа 1945 года японские города Хиросима и Нагасаки озарились светом тысячи солнц. Две ядерные бомбы, сброшенные на эти города, буквально стерли все живое на сотни километров вокруг этих городов. Именно тогда люди впервые задумались о том, что будет, если кто-то бросит бомбу в ответ. Что случится в результате глобального ядерного конфликта? Что произойдет с людьми, с планетой, останется ли жизнь на земле? А если останется, то что это будет за жизнь? Об истории создания ядерной бомбы, механизме действия ядерного оружия и ядерной зиме рассказывают лучшие физики мира.
Книга М. Ивановского «Законы движения» знакомит читателей с основными законами механики и с историей их открытия. Наряду с этим в ней рассказано о жизни и деятельности великих ученых Аристотеля, Галилея и Ньютона.Книга рассчитана на школьников среднего возраста.Ввиду скоропостижной смерти автора рукопись осталась незаконченной. Работа по подготовке ее к печати была проведена Б. И. Смагиным. При этом IV, V, VI и VII главы подверглись существенной переработке. Материал этих глав исправлен и дополнен новыми разделами.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В небольшой по объему книге «Золотое правило» М. Ивановский в занимательней форме сообщает читателю интересные сведения из истории, а также из жизни великого ученого древности — Архимеда.Наряду с историческими сведениями автор, воспользовавшись удачным литературным приемом, знакомит школьников с устройством и действием целого ряда простых механизмов — ворота, лебедки, полиспаста, дифференциального ворота и др. И хотя некоторые из этих механизмов не изучаются в школьном курсе физики, они в описании автора становятся вполне понятными для учащихся VI–VII классов.М.
В книге описываются результаты экспериментов по изучению оригинального квантово-волнового метода механического воздействия на кристаллы алмаза. Проведенные эксперименты открывают новые свойства и особенности этих кристаллов, находящихся в сильнонеравновесных условиях обработки. Показана принципиальная возможность возникновения необратимых сильнонеравновесных явлений в кристаллах алмаза при формировании в их объеме волновых потоков с винтовым возмущением волнового фронта. Взаимодействие этих волновых потоков в объеме алмаза приводит как к изменению дефектно-примесной структуры алмаза, снятию внутренних напряжений, так и к формированию морфологического рельефа поверхности кристалла без непосредственного касания всей его поверхности инструментом.
В заключительной из четырех книг «Физика для всех» изложены основные сведения, специфичные для электромагнитных волн, проблема теплового излучения, учение о спектрах, приведены примеры наиболее распространенных лазеров, много внимания уделено ядерной физике. Отдельные разделы посвящены обобщению механики на случай быстрых движений (специальная теория относительности) и движения малых частиц (волновая механика). Для широкого круга читателей, проявляющих интерес к данной науке.