Электричество шаг за шагом - [29]
В заключение ещё один вариант состояния вещества, показанный первым на этом рисунке Р-14.1 и на предыдущем Р-13.1. Здесь представлены атомы, у которых все электроны прочно связаны с ядром и находятся на своих орбитах, в итоге свободных зарядов вообще нет. Такие вещества тоже нужны электротехнике, скоро вы увидите, когда и почему.
Пятую симфонию Бетховена и выучить таблицу умножения. Что поделаешь — такими мы с ней получились у природы. И давайте не будем из-за этого горевать, давайте радоваться тому, что человек не смирился, что он научился силой мысли видеть, понимать и практически использовать то, что казалось спрятанным от него навсегда. Сталкиваясь с необъяснимым, он чаще всего действовал по довольно простому правилу: на опыте убедись, что Это есть, определи основные свойства Этого, привесь табличку, то есть дай Этому название и привыкай к мысли, что ты теперь знаешь Нечто Такое, чего не знали твои предки.
Таким же способом мы можем совершенно спокойно ввести разного рода поля в свою картину мира. Поле — это никак не вещество, а иная, невидимая, особая форма материи или, как ещё говорят, особое состояние пространства, в котором действуют те или иные физические силы: электрические, магнитные, гравитационные, ядерные, слабые. Все соответствующие этому списку поля обнаружены в экспериментах, у них своё место в физических теориях, они детально изучены и широко используются в огромном количестве машин и технологий. Коротко говоря, поля есть, они не выдумка, это Нечто мы признаём и, как говорится, включаем в свою картину мира.
Кстати, о невидимости полей. Электрические и магнитные поля, вернее их объединение, это единственное, что действительно видит человек. Потому что свет есть не что иное, как электромагнитные волны, быстроменяющиеся электрические и магнитные поля. Их излучают или отражают окружающие нас предметы, эти волны попадают в глаз, и только поэтому мы видим то, что видим: свечу, книгу, луну, пирожок на тарелке, летящий самолёт. Более того, в световой волне электрические и магнитные поля уже не связаны с породившим их электрическим зарядом, они оторвались от него и совершенно свободны, живут своей жизнью (Т-8) — мы видим электрические и магнитные поля, так сказать, в чистом виде. И наконец ещё один, совсем уже нокаутирующий факт — физики предсказали, а затем и в эксперименте увидели, как порция (квант) электромагнитного поля превращается в пару электронов, то есть реальность «Поле» превращается в реальность «Вещество».
Каждый, конечно, может и дальше поразмышлять об электрическом, магнитном или гравитационном поле, о других непонятностях, а лучше сказать — непривычностях. У нас же, к сожалению, сейчас нет времени на эти приятные размышления — у нас впереди ещё большой путь в науку об электричестве, и мы должны продвигаться вперед.
Т-40. Уже древние греки, продолжив свои опыты, могли бы создать в проводнике электрический ток — упорядоченное движение электронов. Выяснив, что электрический заряд воздействует на другой заряд не плечом (Т-8), а электрическим полем, мы можем спокойно вернуться к своему экспериментальному генератору — к натёртым, то есть наэлектризованным стеклянной (+) и пластмассовой (-) палочкам. Вспомните, как только мы соединили эти палочки металлическим проводником (нагрузка), в проводнике сразу же началось упорядоченное движение свободных электронов. Слово «упорядоченное» нужно особо подчеркнуть — речь идёт не просто о движении электронов, а о том движении, которое возникает под действием внешних электрических сил, под действием электрических полей, в данном случае полей, созданных наэлектризованными палочками.
ВК-47.Если генератор мощностью 1 ватт работал 1 секунду, то он выполнил работу 1 джоуль. Иными словами, 1 джоуль = 1 ватт х 1 секунду = 1 ватт-секунда.
Иногда именно в этих ватт-секундах (Вт∙с), а не в джоулях (Дж) удобней измерять выполненную электричеством работу. Её измеряют и в более крупных единицах — в киловатт∙часах (кВт∙час). Поскольку 1 час = 3600 секунд и 1 киловатт = 1000 ватт, то каждый киловатт-час — это 3 600 000 джоулей.
Р-15. ГЛАВНЫЙ РАБОТНИК — ЭЛЕКТРИЧЕСКИЙ ТОК. Первые исследователи электричества, натирая крупные предметы из смолы, стекла или иных материалов, возможно, надеялись перемещать эти крупные предметы электрическими силами и таким образом выполнять большую работу, помогая человеку. Но техника пошла иным путём, и главным работником в электрических машинах и приборах стали невидимо мелкие детали — движущиеся свободные электроны и ионы. Двигают их, конечно, электрические силы, о создании которых мы вскоре поговорим отдельно, а пока воспользуемся тем, что у нас уже есть, — двумя натёртыми палочками, стеклянной и пластмассовой. У стеклянной палочки, напомним, после натирания появляется положительный электрический заряд (+), у пластмассовой палочки отрицательный (—). Если эти палочки приложить к материалу, в котором есть свободные, то есть способные двигаться, заряды, например свободные электроны, то эти заряды действительно начнут упорядоченно перемещаться под действием электрических сил. Натёртая пластмассовая палочка своим «минусом» будет отталкивать отрицательно заряженные электроны, стеклянная палочка своим «плюсом» будет их притягивать (2). Небольшого заряда натёртых палочек, конечно, хватит на какие-то секунды или даже доли секунды, но в мысленном эксперименте этого достаточно, чтобы запомнить главное: электрические силы могут создавать упорядоченное движение свободных микрочастиц, имеющих собственный электрический заряд. Это движение частиц принято называть «электрический ток».
Книга «Ваш радиоприемник» — удачный пример того, как можно просто, занимательно и в то же время достаточно конкретно рассказать о радиоэлектронной технике. Эта книга будет полезной не только для тех, кто хочет поближе познакомиться со своим приемником, но в первую очередь для тех, кто испытывает потребность познакомиться с основами современной радиоэлектроники.
Книга написана простым языком и ориентирована на средний и старший школьный возраст. В ней автор доступным языком излагает основы работы полупроводниковых приборов. Книга сопровождается множеством иллюстраций, благодаря чему шаг за шагом постигается сложный мир внутри транзисторов.Поскольку книга больше ориентирована на детей, то повествование идет буквально "на пальцах", не используется никаких сложных формул или вычислений — только как полупроводниковые приборы работают и как их использовать.
В этой книге рассказано о ламповых усилителях низкой частоты, громкоговорителях и их акустическом оформлении, о некоторых путях улучшения качества звучания радиоаппаратуры. Рассказ об основах радиоэлектроники и принципах усиления иллюстрируется схемами и описаниями радиолюбительских конструкций: радиограммофонов, высококачественных усилителей, простого школьного радиоузла, акустических агрегатов.
Эта книга для тех, кто хочет стать радиолюбителем-конструктором и строить замечательные электронные приборы — приемники, усилители, радиостанции, магнитофоны. Начиная с простейшего детекторного приемника, постепенно, шаг за шагом, читатель познакомится с принципом работы, схемами и устройством различных самодельных приемников, включая многоламповые супергетеродины.В книге коротко изложены элементы электротехники, которые нужно знать радиолюбителю, описана работа основных радиотехнических деталей — электронных ламп, полупроводниковых приборов, трансформаторов, колебательных контуров, а также приводятся справочные данные, необходимые радиолюбителю для самостоятельной работы.
В книге интересно и увлекательно автор рассказывает об актуальных исследованиях в некоторых областях физики, астрономии, космонавтики, электроники и знакомит учащихся с новейшими достижениями и проблемами науки.
В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.