Электричество шаг за шагом - [27]

Шрифт
Интервал

) работают, вырабатывают какое-то количество тепла. А это значит, что наша цель достигнута, завод, где работают движущиеся заряды, построен.



ВК-43.Существуют сравнительно простые электроизмерительные приборы — для измерения тока амперметр и для измерения электродвижущей силы вольтметр. Вольтметр подключается параллельно выходным зажимам генератора, у которого нужно измерить Э.Д.С., а амперметр включается последовательно в цепь, в которой нужно измерить ток. При включении амперметра и вольтметра нужно соблюдать правильную полярность — не перепутать местами + и —, они указаны на входных контактах приборов.



Р-13. У НАС ТОЖЕ ВОЗМОЖНЫ ВАРИАНТЫ… Таблица на этом рисунке поясняет, какие в принципе возможны изменения, в результате которых у какого-либо физического тела начнёт показывать себя электрический заряд, как мы это наблюдали при натирании стекла и пластмассы. В первых трёх столбцах таблицы показаны 3 атома (атом водорода и два условных атома с разным числом протонов в ядре) в идеальном состоянии — в каждом из них равно число положительных (+) и отрицательных (—) зарядов. Вещество, созданное из таких атомов, никаких электрических свойств не проявляет. В следующей тройке колонок у атомов связь внешних электронов с ядром слабее, и часть появившихся свободных электронов удаётся удалить из вещества, как это происходило при натирании стекла. У вещества, о котором рассказывают три последних столбца таблицы, атомы сумели где-то добыть и присоединить к себе несколько лишних электронов, и общий электрический заряд вещества оказался отрицательным, как это было при натирании пластмассы.


Прежде чем двигаться дальше — два предупреждения. Во-первых, экспериментируя с наэлектризованными палочками и проводником, мы ввели важнейшее для всей электротехники понятие «электрический ток», сказав о нём буквально несколько слов. Но это лишь самое предварительное сообщение о токе, очень скоро о нём будет рассказано подробно. Во-вторых, экспериментируя с наэлектризованными палочками и проводником, хорошо бы какими-нибудь цифрами оценить работу нашей учебной электрической цепи. Много ли она получает энергии? Много ли выдаёт тепла? От чего всё это зависит? По каким показателям можно оценить то, что происходит в цепи? Как определить работоспособность свободных электронов? Как оценить массовость их движения в проводнике? Ответить на подобные вопросы не очень трудно, это непременно будет сделано, и тоже очень скоро, буквально через несколько страниц (Т-43). Значительно сложнее ответить на другой вопрос, просто смешной, на первый взгляд: как технически избыточные заряды создают электрический ток? Каким способом один электрический заряд толкает второй заряд? Может быть, просто прижимается к нему и толкает, как, скажем, напористый хоккеист плечом толкает своего соперника?

Т-38. Наряду с веществом существует и такой вид материи, как поле. Во всём нашем рассказе об электричестве этот небольшой раздел — один из самых сложных, в значительной степени из-за него пришлось начинать издалека. С того, что человек нелегко и непросто постигал устройство мира. Что мир устроен намного сложнее, чем кажется с первого взгляда. И что нужно уметь считаться с реальностью, какой бы непривычной она ни казалась. Нужно научиться признавать очевидные факты, ограждать себя от неверия и внутренних протестов спокойной формулой «Так устроен этот мир…».

Мы, к сожалению, не видим, как лишние электроны пластмассовой палочки (-) подталкивают свободные электроны проводника, — плечом или как-то иначе (Т-8). Но мы прекрасно видели, как натёртая палочка с довольно большого расстояния подтягивала клочки бумаги (Р-1, Р-17). Каким образом? С помощью каких нитей? Через каких посредников? Не может же палочка действовать на бумажки через Ничто, обязательно должно существовать какое-то Нечто, с помощью которого один заряд тянет к себе другой.

Проще всего было бы предположить, что заряды как-то взаимодействуют через вещество, которое находится между ними, в нашем примере с притягиванием бумажек — через воздух. Например, заряды тянут или толкают друг друга через молекулы, атомы, электроны или ещё какие-нибудь частицы вещества, подобно тому, как паровоз через весь состав передаёт свою тягу последнему вагону. Но достаточно перенести эксперимент в безвоздушное пространство, в вакуум, и эта гипотеза безнадёжно отпадает — в вакууме, в пустоте, где никакого промежуточного вещества нет, палочка притягивает клочки бумаги с такой же силой, как и в воздухе. А это значит…



ВК-44.Сила тока I в амперах — это количество кулонов, которое за секунду проходит через поперечное сечение проводника. А электродвижущая сила Е в вольтах — это работа, которую выполняет каждый кулон. Значит, мощность Р в ваттах (работа за секунду) в какой-либо цепи можно подсчитать как произведение э.д.с. в вольтах (работа одного кулона) на ток в амперах (число кулонов в секунду). То есть мощность можно подсчитать по достаточно простой формуле Р (в ваттах) = Е (в вольтах) х I (в амперах).


А это значит, что в мире есть ещё что-то, кроме реальности «вещество», к которому мы привыкали миллионы лет и вроде бы знаем все его свойства и повадки: массу, объём, геометрические формы, гравитационное притяжение, движение по инерции, плотность, температуру. Вещество, считаем мы, — это то, что реально есть, то, что мы видим и, образно говоря, можем взять в руки. Вещество — это глина, вода, воздух, плитка шоколада, марсианские пески, лепесток ромашки. Нам кажется, всё, что есть в мире, — это вещество.


Еще от автора Рудольф Анатольевич Сворень
Ваш радиоприемник

Книга «Ваш радиоприемник» — удачный пример того, как можно просто, занимательно и в то же время достаточно конкретно рассказать о радиоэлектронной технике. Эта книга будет полезной не только для тех, кто хочет поближе познакомиться со своим приемником, но в первую очередь для тех, кто испытывает потребность познакомиться с основами современной радиоэлектроники.


Шаг за шагом. Транзисторы

Книга написана простым языком и ориентирована на средний и старший школьный возраст. В ней автор доступным языком излагает основы работы полупроводниковых приборов. Книга сопровождается множеством иллюстраций, благодаря чему шаг за шагом постигается сложный мир внутри транзисторов.Поскольку книга больше ориентирована на детей, то повествование идет буквально "на пальцах", не используется никаких сложных формул или вычислений — только как полупроводниковые приборы работают и как их использовать.


Шаг за шагом. Усилители и радиоузлы

В этой книге рассказано о ламповых усилителях низкой частоты, громкоговорителях и их акустическом оформлении, о некоторых путях улучшения качества звучания радиоаппаратуры. Рассказ об основах радиоэлектроники и принципах усиления иллюстрируется схемами и описаниями радиолюбительских конструкций: радиограммофонов, высококачественных усилителей, простого школьного радиоузла, акустических агрегатов.


Шаг за шагом. От детекторного приемника до супергетеродина

Эта книга для тех, кто хочет стать радиолюбителем-конструктором и строить замечательные электронные приборы — приемники, усилители, радиостанции, магнитофоны. Начиная с простейшего детекторного приемника, постепенно, шаг за шагом, читатель познакомится с принципом работы, схемами и устройством различных самодельных приемников, включая многоламповые супергетеродины.В книге коротко изложены элементы электротехники, которые нужно знать радиолюбителю, описана работа основных радиотехнических деталей — электронных ламп, полупроводниковых приборов, трансформаторов, колебательных контуров, а также приводятся справочные данные, необходимые радиолюбителю для самостоятельной работы.


В просторы космоса, в глубины атома [Пособие для учащихся]

В книге интересно и увлекательно автор рассказывает об актуальных исследованиях в некоторых областях физики, астрономии, космонавтики, электроники и знакомит учащихся с новейшими достижениями и проблемами науки.


Рекомендуем почитать
Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Климатическая наука: наблюдения и модели

Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.