Эффективное использование STL - [26]

Шрифт
Интервал

(вероятно, посредством >allocator::construct, >uninitialized_fill или >raw_storage_iterator), хотя в случае >vector::reseve или >string::reseve этого может никогда не произойти (совет 13). Различия в типах возвращаемых значений оператора >new и >allocator::allocate означают изменение концептуальной модели неинициализированной памяти, что также затрудняет применение опыта реализации оператора >new к разработке нестандартных распределителей.

Мы подошли к последней странности распределителей памяти в STL: большинство стандартных контейнеров никогда не вызывает распределителей, с которыми они ассоциируются. Два примера:

>list L; // То же, что и list

>             // Контейнер никогда не вызывает

>             // allocator для выделения памяти!

>set s;// SAW представляет собой определение типа

>                  // для SpeciаlAllосаtor, однако

>                  // ни один экземпляр SAW не будет

>                  // выделять память!

Данная странность присуща >list и стандартным ассоциативным контейнерам (>set, >multiset, >map и >multimap). Это объясняется тем, что перечисленные контейнеры являются узловыми, то есть основаны на структурах данных, в которых каждый новый элемент размещается в динамически выделяемом отдельном узле. В контейнере >list узлы соответствуют узлам списка. В стандартных ассоциативных контейнерах узлы часто соответствуют узлам дерева, поскольку стандартные ассоциативные контейнеры обычно реализуются в виде сбалансированных бинарных деревьев.

Давайте подумаем, как может выглядеть типичная реализация >list. Список состоит из узлов, каждый из которых содержит объект >T и два указателя (на следующий и предыдущий узлы списка).

>template,           // Возможная реализация

>typename Allocator=allocator // списка

>class list {

>private:

> Allocator alloc;// Распределитель памяти для объектов типа T

> struct ListNode{// Узлы связанного списка

>  T data;

>  ListNode *prev;

>  ListNode *next;

> };

> …

>};

При включении в список нового узла необходимо получить для него память от распределителя, однако нам нужна память не для >T, а для структуры >ListNode, содержащей >T. Таким образом, объект >Allocator становится практически бесполезным, потому что он выделяет память не для >ListNode, а для >T. Теперь становится понятно, почему >list никогда не обращается к >Allocator за памятью — последний просто не способен предоставить то, что требуется >list.

Следовательно, >list нужны средства для перехода от имеющегося типа распределителя к соответствующему распределителю >ListNode. Задача была бы весьма непростой, но по правилам распределитель памяти должен предоставить определение типа для решения этой задачи. Определение называется >other, но не все так просто — это определение вложено в структуру с именем >rebind, которая сама по себе является шаблоном, вложенным в распределитель, — причем последний тоже является шаблоном!

Пожалуйста, не пытайтесь вникать в смысл последней фразы. Вместо этого просто рассмотрите следующий фрагмент и переходите к дальнейшему объяснению:

>template

>class allocator {

>public:

> template

> struct rebind{

>  typedef allocator other;

> };

> …

>}

В программе, реализующей >list, возникает необходимость определить тип распределителя >ListNode, соответствующего распределителю, существующему для >T. Тип распределителя для >T задается параметром >allocator. Учитывая сказанное, тип распределителя для >ListNode должен выглядеть так:

>Allocator::rebind::other

А теперь будьте внимательны. Каждый шаблон распределителя >A (например, >std::allocator, SpecialAllocator и т. д.) должен содержать вложенный шаблон структуры с именем >rebind. Предполагается, что >rebind получает параметр >U и не определяет ничего, кроме определения типа >other, где >other — просто имя для >A. В результате >list может перейти от своего распределителя объектов >T(Allocator) к распределителю объектов >ListNode по ссылке >Allocator::rebind::other.

Может, вы разобрались во всем сказанном, а может, и нет (если думать достаточно долго, вы непременно разберетесь, но подумать придется — знаю по своему опыту). Но вам как пользователю STL, желающему написать собственный распределитель памяти, в действительности не нужно точно понимать суть происходящего. Достаточно знать простой факт: если вы собираетесь создать распределитель памяти и использовать его со стандартными контейнерами, ваш распределитель должен предоставлять шаблон >rebind, поскольку стандартные шаблоны будут на это рассчитывать (для целей отладки также желательно понимать, почему узловые контейнеры >T никогда не запрашивают память у распределителей объектов >T).

Ура! Наше знакомство со странностями распределителей памяти закончено. Позвольте подвести краткий итог того, о чем необходимо помнить при программировании собственных распределителей памяти:

• распределитель памяти оформляется в виде шаблона с параметром >T, представляющим тип объектов, для которых выделяется память;

• предоставьте определения типов >pointer и >reference, но следите за тем, чтобы pointer всегда был эквивалентен


Еще от автора Скотт Мейерс
Эффективный и современный С++. 42 рекомендации по использованию С++11 и С++14

Эффективный и современный С++Освоение С++11 и С++14 — это больше, чем просто ознакомление с вводимыми этими стандартами возможностями (например, объявлениями типов auto, семантикой перемещения, лямбда-выражениями или поддержкой многопоточности). Вопрос в том, как использовать их эффективно, чтобы создаваемые программы были корректны, эффективны и переносимы, а также чтобы их легко можно было сопровождать. Именно этим вопросам и посвящена данная книга, описывающая создание по-настоящему хорошего программного обеспечения с использованием C++11 и С++14 — т.е.


Как функции, не являющиеся методами, улучшают инкапсуляцию

Когда приходится инкапсулировать, то иногда лучше меньше, чем большеЯ начну со следующего утверждения: Если вы пишете функцию, которая может быть выполнена или как метод класса, или быть внешней по отношению к классу, Вы должны предпочесть ее реализацию без использования метода. Такое решение увеличивает инкапсуляцию класса. Когда Вы думаете об использовании инкапсуляции, Вы должны думать том, чтобы не использовать методы.Удивлены? Читайте дальше.


Рекомендуем почитать
Графика DirectX в Delphi

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Вторая жизнь старых компьютеров

Сейчас во многих школах, институтах и других учебных заведениях можно встретить компьютеры старого парка, уже отслужившие свое как морально, так и физически. На таких компьютерах можно изучать разве что Dos, что далеко от реалий сегодняшнего дня. К тому же у большинства, как правило, жесткий диск уже в нерабочем состоянии. Но и выбросить жалко, а новых никто не дает. Различные спонсоры, меценаты, бывает, подарят компьютер (один) и радуются, как дети. Спасибо, конечно, большое, но проблемы, как вы понимаете, этот компьютер в общем не решает, даже наоборот, усугубляет, работать на старых уже как-то не хочется, теперь просто есть с чем сравнивать.


DirectX 8. Начинаем работу с DirectX Graphics

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Симуляция частичной специализации

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Обработка событий в С++

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Питон — модули, пакеты, классы, экземпляры

Python - объектно-ориентированный язык сверхвысокого уровня. Python, в отличии от Java, не требует исключительно объектной ориентированности, но классы в Python так просто изучить и так удобно использовать, что даже новые и неискушенные пользователи быстро переходят на ОО-подход.


SQL: быстрое погружение

Что общего между самыми востребованными профессиями и стремительным увеличением количества информации в мире? Ответ: язык структурированных запросов (SQL). SQL — рабочая лошадка среди языков программирования, основа основ для современного анализа и управления данными. Книга «SQL: быстрое погружение» идеальна для всех, кто ищет новые перспективы карьерного роста; для разработчиков, которые хотят расширить свои навыки и знания в программировании; для любого человека, даже без опыта, кто хочет воспользоваться возможностями будущего, в котором будут править данные.


Чистый код. Создание, анализ и рефакторинг

Даже плохой программный код может работать. Однако если код не является «чистым», это всегда будет мешать развитию проекта и компании-разработчика, отнимая значительные ресурсы на его поддержку и «укрощение». Эта книга посвящена хорошему программированию. Она полна реальных примеров кода. Мы будем рассматривать код с различных направлений: сверху вниз, снизу вверх и даже изнутри. Прочитав книгу, вы узнаете много нового о коде. Более того, вы научитесь отличать хороший код от плохого. Вы узнаете, как писать хороший код и как преобразовать плохой код в хороший. Книга состоит из трех частей.


Изучаем Python

Книга "Изучаем Python" - это ускоренный курс, который позволит вам сэкономить время и сразу начать писать работоспособные программы (игры, визуализации данных, веб-приложения и многое другое). Хотите стать программистом? В первой части книги вам предстоит узнать о базовых принципах программирования, познакомиться со списками, словарями, классами и циклами, вы научитесь создавать программы и тестировать код. Во второй части книги вы начнете использовать знания на практике, работая над тремя крупными проектами: создадите собственную "стрелялку" с нарастающей сложностью уровней, займетесь работой с большими наборами данных и освоите их визуализацию, и, наконец, создадите полноценное веб-приложение на базе Django, гарантирующее конфиденциальность пользовательской информации. Если вы решились разобраться в том что такое программирование, не нужно ждать.


Грокаем алгоритмы. Иллюстрированное пособие для программистов и любопытствующих

Алгоритмы - это всего лишь пошаговые алгоритмы решения задач, и большинство таких задач уже были кем-то решены, протестированы и проверены. Можно, конечно, погрузится в глубокую философию гениального Кнута, изучить многостраничные фолианты с доказательствами и обоснованиями, но хотите ли вы тратить на это свое время? Откройте великолепно иллюстрированную книгу и вы сразу поймете, что алгоритмы - это просто. А грокать алгоритмы - это веселое и увлекательное занятие.