Догонялки с теплотой - [7]

Шрифт
Интервал

Что и говорить, повезло создателям первого начала термодинамики, что его уравнение удалось записать без использования температуры. Легко запомнить: внутреннюю энергию тела можно увеличить либо через сообщение теплоты, либо через совершение работы. Ибо теплота – это энергия хаотического движения частиц тела. Сообщи телу теплоту или поработай над ним – это хаотическое движение так и так станет интенсивнее, и температура тела так и так повысится. Всё сходится, в том числе и тепловой баланс! Первое начало термодинамики впечатали в учебники и справочники, на нём взрастили вереницу поколений теплотехников – до сих пор взращивают. И, наверное, лишь очень немногих из них не терзают смутные сомнения. Ведь, по «первому началу», температура тела может измениться только при воздействии на это тело откуда-то извне. Получение тепла – извне! Принятие работы – извне! «Первое начало» однозначно утверждает, что температура тела не может измениться в результате каких-нибудь внутренних процессов в этом теле. Но ведь это шутка, таких процессов полным-полно!

Самым жутким в ряду злостных нарушений первого начала термодинамики являются химические реакции с выделением или поглощением тепла – которые без затруднений протекают в условиях термоизоляции от окружающей среды. Вот, скажем, начинается реакция с выделением тепла. А выделяться ему некуда: термоизоляция мешает. Ладно, греет зона реакции саму себя, не пропадать же добру. Но, в случае реакции с поглощением тепла, всё получается гораздо веселее – неоткуда его поглощать в условиях термоизоляции. Каков смысл формулировки «реакция с поглощением тепла», если единственным тепловым результатом является охлаждение зоны реакции? Это умудриться надо: так «поглощать тепло», чтобы при этом охлаждаться! Заметьте, мы сейчас не уточняем источники тепловых эффектов химических реакций. Мы просто говорим о ситуациях, когда тепловой эффект есть, а передачи тепла или совершённой работы – нет. Укладывается это в первое начало термодинамики? Никоим образом!

А вот ещё – тоже известный случай: электрическая цепь, по которой течёт ток. Особенно, когда источником тока является аккумулятор. Проводники имеют ненулевое сопротивление, и в них выделяется джоулево тепло. Это называется «тепловое действие тока». Опять же, никакой передачи тепла при этом не происходит. Если бы она происходила, то тело, которое отдавало бы тепло, охлаждалось бы. Но мы не обнаруживаем такого тела: нагревание есть – всей цепи, в том числе и источника тока – а охлаждения нет. Что же мы видим? Происходит нагрев, когда нет передачи тепла, да и работа над электрической цепью, очевидно, не совершается. Опять, тело само себя греет. Опять, первое начало термодинамики оказывается не при делах!

Так ведь и это не всё. Выделение тепла при радиоактивных распадах атомных ядер тоже происходит, начхавши на первое начало термодинамики. Чудны дела ваши, господа теоретики! И вы ещё нам вдалбливаете, что первое начало термодинамики выражает собой фундаментальный принцип: невозможность вечного двигателя первого рода! А ваше «первое начало» - уже трижды подкачало! Прям бери да клепай себе вечные двигатели на выбор – химические, электрические, ядерные! Эх, дяденьки учёные. Этот ваш прокол, конечно, можно извинить роковым стечением исторических обстоятельств: «первое начало» было сформулировано в эпоху паровых машин. Да, для паровозов и пароходов оно сошло за милую душу. Но технический прогресс-то не стоял на месте. Появились теплоходы и тепловозы, трамваи и электровозы, да ещё и мирные ядерные реакторы… А первое начало термодинамики так и зависло на правах догмата. Ай-яй-яй. Вы, дяденьки учёные, брали бы пример со служителей культа, что ли. Они время от времени устраивают Вселенские соборы, на которых подправляют свои догматы. Издают официальные указы, в которых так прямо и провозглашают: с такого-то числа веруем по-новому!

Короче, годилось «первое начало» только для паровых машин, да и то – громко говоря. Даже тут – не по Сеньке шапка была. Потому что «первое начало» не описывало работу паровой машины в целом. Оно описывало лишь пыхтение пара – а горение топлива, с помощью которого получали и нагревали этот пар, оно не описывало. И, что ещё обиднее: казалось, что пыхтящий пар совершал гораздо больше бесполезной работы, чем полезной. Ведь в полезную работу удавалось превратить лишь малую часть тепла, которое давало сгорание топлива. Мистика какая-то! Сожгут в калориметрической бомбе порцию уголька – и вот она, его теплотворная способность! Бери потом да превращай тепло от его сгорания в работу, согласно «первому началу»! Ан нет. Теплотворная способность – это одно, а работоспособность – это, как выяснилось, совсем другое. Устанавливали-устанавливали механический эквивалент теплоты – а ради чего, спрашивается? Ради того, чтобы от него оставались жалкие 10%, да и то, если повезёт? Нет, такую жизнь надо было если уж не изменить, то хотя бы оправдать. Вот на это (на оправдание) и решился Карно. Он задумался: как бы это сконструировать формулу, из которой следовало бы принципиальное ограничение на коэффициент полезного действия (КПД) тепловой машины – и соорудил знаменитый рабочий цикл машины, которая для такой задумки подошла идеально. Поэтому её так и стали называть: идеальная тепловая машина. Что тепловая машина должна работать циклически – это, мол, принципиально. Рабочее тело, получив порцию тепла, должно отдать часть приобретённой энергии на совершение полезной работы и охладиться, чтобы иметь возможность получить следующую порцию тепла. Поэтому при анализе работы тепловой машины следует, мол, рассматривать не только нагреватель, от которого получает тепло рабочее тело, но и т.н. холодильник, которому рабочее тело отдаёт тепло, не превращённое в полезную работу (отсюда и пошло выражение «эта машина хорошо атмосферу греет»). Так вот: одним из лучших описаний цикла Карно считается описание в известном учебнике – А.К.Кикоин, И.К.Кикоин, «Молекулярная физика». Это просто сказка. Логика такая: чтобы КПД тепловой машины был максимален, следует исключить необратимые потери тепла. А эти потери тепла непременно имеют место при теплопередаче. Следовательно, в идеальной тепловой машине следует исключить… процессы теплопередачи! Вы не подпрыгнули, дорогой читатель: «Как?! Как же такая машина сможет работать?» А вот, Кикоины сейчас всё разъяснят. Цикл начинается с того, что рабочее тело «


Еще от автора О Х Деревенский
История физики, изложенная курам на смех

Вся история физики, от начала времен и до наших дней, изложенная честно и беспристрастно. Естественно, как честный человек, описывая современное состояние предмета, автор приходит к вполне очевидному для наших современников (даже совершенно не знающих физики!) выводу:"Когда я слышу, что Галилей заложил основы научного физического метода, я понимаю: мелко же плавал этот Галилей! Куда ему до титанов, которые заложили и перезаложили всю физику с потрохами. Так оно всегда и выходит, когда любителей вытесняют профессионалы.".


Бирюльки и фитюльки всемирного тяготения

Помните, как в школе мы все замирали словно кролики перед удавом перед законом про "всемирное тяготение" всех масс в мире друг к другу. Нам рисовали на доске двухэтажную формулу, а вместо её доказательства рассказывали анекдот про яблоко, поразившее в темечко спящего автора, который проснулся от удара и тут же этот самый закон записал. Особо сомневающимся в факте взаимного тяготения масс предлагалось для доказательства спрыгнуть откуда-нибудь повыше и посмотреть, что будет.Позже, в институте, доказательство этого закона тоже как-то проскакивали на большой скорости, без ненужных подробностей.И, как оказалось, далеко не случайно.


Фиговые листики теории относительности

Канонизированная версия появления теории относительности (ТО), вкратце, такова. На рубеже XIX-XX веков был в оптике движущихся тел жуткий кризис. Физики захлебнулись в противоречиях, сидели в прострации и не знали, что делать дальше. Тут-то Эйнштейн и вывел этих недотёп на путь истинный. Все-то противоречия его ТО устранила, все-то эксперименты она объяснила, да ещё кучу предсказаний сделала – и все они великолепно подтвердились на опыте! Ну, красная цена канонизированным версиям хорошо известна: «Боже мой, что скажет история?» - «Да не волнуйтесь, история солжёт, как всегда!»И точно! Никаких противоречий ТО не устранила: она их послала куда подальше, а от себя новых насадила, ласково называя их парадоксами.


Фокусы-покусы квантовой теории

Квантовая теория приводит в трепет даже многих физиков. Ох, как они горды тем, что всякие там доморощенные опровергатели основ суются со своими умничаниями в самые разные области – и в классическую механику, и в электродинамику, и, в особенности, в теорию относительности – но никто не покушается на квантовую теорию! «Даже этим олухам ясно, - веселятся академики, - что без квантовой теории люди бы до сих пор жили в пещерах и бегали с каменными топорами!» Без квантовой теории, мол, не было бы лазеров – а без лазеров, девочки и мальчики, не было бы у вас таких балдёжных дискотек! Без квантовой теории, мол, не было бы понимания того, как движутся электроны в металлах и полупроводниках – а без этого понимания, девочки и мальчики, не было бы у вас ни компьютеров, ни мобильных телефончиков!  Откуда девочкам и мальчикам знать, что всё это – шутки? Лазеры, компьютеры, мобильные телефончики – своим появлением они вовсе не обязаны квантовой теории.


Рекомендуем почитать
Физики о физиках

Книга «Физики о физиках» родилась из бесед автора с нашими физиками — академиками Таммом, Леонтовичем, Кикоиным, Константиновым, Полубариновой-Кочиной, Гинзбургом, членами-корреспондентами Академии наук — Дерягиным, Регелем, Гапоновым-Греховым и многими другими. Их воспоминания о прошедшем, о зарождении и судьбе открытий и о встречах с выдающимися учеными послужили первоосновой, на которой А. Ливанова создала портреты корифеев науки — эти портреты мы и представляем читателям.


Чем мир держится?

В списке исследователей гравитации немало великих имен. И сегодня эту самую слабую и одновременно самую могучую из известных физикам силу взаимодействия исследуют тысячи ученых, ставя тончайшие опыты, выдвигав, остроумные предположения и гипотезы.В книге рассказывается, как эта проблема изучалась в прошлом и как она изучается в настоящее время. Для широкого круга читателей.


Как мы будем жить на Марсе

Есть ли жизнь на Марсе? Мы до сих пор не знаем ответа на этот вопрос. Но зато мы точно знаем, что скоро она там появится. Автор этой книги, специалист в области технологических прогнозов и постоянный спикер ТЕД Стивен Петранек, уверен: первый пилотируемый полет на Марс состоится еще до 2030 года. Причем это, скорее всего, будет экспедиция в один конец: астронавты, высадившиеся на Марсе, останутся там навсегда, чтобы основать первый аванпост человечества за пределами Земли. Этим первопроходцам предстоит решить множество сложнейших проблем, но похоже, что все необходимые для этого технологии уже сегодня есть в нашем распоряжении.


Атом урана — новый источник энергии

Статья опубликована в журнале «Огонек», № 35 (954), 1945.


Физика в бою

В книге коллектива авторов в живой, популярной форме рассказывается о том, какую важную роль играет физика в современном военном деле, как используются ее достижения для дальнейшего развития ракетно-ядерного оружия, повышения боевых возможностей сухопутных войск, авиации и военно-морского флота Авторы показывают, что без знания основ физики сейчас невозможно плодотворно изучать и квалифицированно использовать боевую технику и вооружение, видеть, в каком направлении идет их прогресс. Встречаясь с известными еще со школьной скамьи физическими законами, читатель узнает, каких интересных и зачастую необычных результатов добиваются ученые и инженеры, используя эти законы для решения сложных проблем современного боя Читатель познакомится с новейшими военно-техническими достижениями, родившимися на основе использования успехов физики, ее тесного контакта с техническими науками.Редактор-составитель инженер-подполковник Жуков В.Н.


Запрещенный Тесла

Эта книга переворачивает все прежние представления о Николе Тесле! Шокирующая правда о самых засекреченных проектах славянского гения! Информационная бомба под основы современного миропорядка!Почему, будучи популярнейшим изобретателем своей эпохи, потеснившим на научном Олимпе самого Эйнштейна, Никола Тесла в то же время является самым недооцененным и запрещенным ученым XX века? Почему его революционные открытия пытаются скрыть под нагромождением мифов и псевдонаучных спекуляций, а большая часть его творческого наследия до сих пор хранится в секретных архивах американских спецслужб? Кем он был на самом деле — добрым чудотворцем, мечтавшим подарить человечеству неисчерпаемые источники энергии, или аморальным безумцем, ставившим смертельно опасные опыты не только на себе, но и на других людях, погубившим сотни жизней в ходе Филадельфийского эксперимента и вызвавшим колоссальный взрыв в Сибирской тайге, теперь известный как «падение Тунгусского метеорита»? Какие еще чудовищные открытия Николы Теслы хранятся под грифом «Совершенно секретно»? И соответствуют ли действительности слухи о неком «дьявольском оружии», изобретенном им незадолго до гибели, — то ли «лучах смерти», то ли супербомбе, способной уничтожить весь мир?