Догонялки с теплотой - [4]
Мы почему об этом – так подробно? Потому что полезно знать, как в физике появилась эта дичь про скрытые теплоты агрегатных превращений – которая до сих пор считается научной истиной. Придётся сказать пару слов про «научность» этой «истины».
Представьте: во внутреннем стаканчике калориметра находятся вода и лёд – в тепловом равновесии друг с другом и с буферным веществом. Ничтожное повышение температуры, до т.н. точки ликвидуса – и фазовое равновесие между льдом и водой нарушится: лёд начнёт таять. Откуда будет заимствоваться тепло на это таяние? Из буферного вещества, что ли? Но тогда его температура понизится, и поток тепла «на таяние» прекратится. На самом же деле, лёд растает весь, а температура так и останется в точке ликвидуса. Скандал!
Может, сегодняшние академики считают этот результат каким-то досадным исключением, поскольку в остальных случаях, мол, концы с концами отлично сходятся – например, при расчётах теплового баланса звезды тау-Кита. Нет, любезные, «исключением» вы здесь не отделаетесь. По-вашему, образование льда на открытых водоёмах тоже должно сопровождаться тепловым эффектом – только теперь та самая «теплота плавления» должна выделяться. Вы, любезные, давали себе труд прикинуть – к каким результатам это должно приводить? Лёд нарастает снизу, а теплопроводность у льда на два порядка хуже, чем у воды. Поэтому, практически, вся «теплота плавления» должна выделяться в воду подо льдом. Если подставить справочные величины в простейшее уравнение теплового баланса для рассматриваемого случая, то получится, что образование слоя льда толщиной 1 мм вызывало бы нагрев прилегающего слоя воды толщиной 1 мм на 70 градусов (а слоя воды в 0.5 мм – аж на 140 градусов; правда, уже при 100>оС началось бы кипение). Как вам этот результатец, любезные? Может, вы скажете, что мы напрасно не учли тепловое перемешивание воды? Ведь, в интервале от 0>о до 4>оС, более тёплая вода опускается, а более холодная – поднимается. У, какая! Но, даже в условиях такого перемешивания, при наличии на поверхности воды источника тепла, вода наверху была бы теплее, чем внизу. На самом же деле, типичный арктический профиль температуры в воде подо льдом таков: контактирующая со льдом вода имеет температуру, близкую к точке замерзания, а, по мере увеличения глубины (в пределах некоторого слоя), температура увеличивается. Это с очевидностью свидетельствует: нет потока тепла в воду от льда, даже от растущего. Океанологи это давно сообразили, поэтому они изобрели такую дурилочку: «тепло кристаллизации… уходит через лёд в атмосферу». Что дальше вытворяет это тепло, которое исчисляется, в региональных масштабах, триллионами килокалорий – это океанологов уже не волнует; пусть дальше с этим теплом атмосферщики разбираются. Можно подумать, будто океанологи не знают, что теплопроводность у льда на два порядка хуже, чем у воды. Куда же, спрашивается, раз за разом прутся арктические экспедиции, и чем там занимаются гидрологи вместе с метеорологами – ледяные скульптуры выпиливают, что ли?
Да и не нужно тащиться в Арктику, чтобы убедиться в отсутствии выделения тепла при замерзании воды. В телепрограмме «Разрушители легенд» демонстрировали хорошо воспроизводимый опыт. Из холодильника аккуратненько берётся бутылка переохлаждённого жидкого пива. Тюкнешь по этой бутылке – и пиво в ней за несколько секунд замерзает в ледяные хлопья. А бутылка остаётся холодной… У этого опыта – потрясающая популяризаторская сила. Ключевые слова: «тепло, холод, бутылка, пиво» - всё очень доходчиво. Даже – для нынешних академиков.
Представляете, как этим академикам тяжело: раз никакой «скрытой теплоты плавления» нет, то придётся не только переписывать физику для седьмого класса, но и оправдываться – как это их обвели вокруг пальца какие-то средневековые химики Блэк и Вильке. А как оправдываться, если секрет того фокуса академики до сих пор не понимают? Ладно уж, подскажем. Секрет в том, что лёд при 0>о, после смешения его с горячей водой, не повышает свою температуру: он тает при постоянной температуре. И, пока он не растает весь, он является источником охлаждения: контактирующая с ним вода, которая сначала была горячей, становится тёплой, потом прохладной, потом ледяной… при равных стартовых весах льда при 0>оС и воды при 70>оС, вся результирующая вода окажется при 0>оС. Дело, как видите, нехитрое. Но нет, от нас требуют объяснений – а куда же, мол, делось тепло, которое было у горячей воды? Друзья, этот вопрос был бы уместен, если в природе работал бы закон сохранения тепла. Но тепловая энергия не сохраняется: она свободно конвертируется в другие формы энергии. Ниже мы проиллюстрируем, что замкнутая система вполне способна изменить свою температуру – да ещё разными способами.
А что касается такого агрегатного превращения вещества, как плавление, то с очевидностью получается, что ни в какой «скрытой теплоте» оно не нуждается. Нагрей образец до температуры плавления – да поддерживай её, если требуется – и образец расплавится уже без посторонней помощи. Те, кто смотрели киноэпопею «Властелин колец» - наверное, помнят последние секунды Кольца Всевластья. Оно упало в жерло «огнедышащей горы» – и вот оно лежит там, лежит… нагревается, нагревается… и, наконец – чавк! И вместо кольца – уже растёкшиеся капельки. Эта сценка создателям фильма очень удалась. Полное ощущение реальности! У золота хорошая теплопроводность, да и колечко было махонькое, поэтому оно прогревалось сразу во всём своём объёме. А, сразу во всём объёме нагрелось до температуры плавления – сразу и расплавилось, без лишних тепловых запросов. Кстати, очевидцы нагрева в индукционных печах металлического лома, например, алюминиевого, свидетельствуют: он не плавится постепенно, по капельке – наоборот, торчащие фрагменты начинают плыть и течь сразу по всему своему объёму. В случае льда отсутствие лишних тепловых запросов на таяние неочевидно просто потому, что теплопроводность льда гораздо хуже, чем у металлов. Поэтому лёд и тает постепенно, по капельке. Но принцип тот же: что нагрелось до температуры плавления – то тут же и расплавилось.
Канонизированная версия появления теории относительности (ТО), вкратце, такова. На рубеже XIX-XX веков был в оптике движущихся тел жуткий кризис. Физики захлебнулись в противоречиях, сидели в прострации и не знали, что делать дальше. Тут-то Эйнштейн и вывел этих недотёп на путь истинный. Все-то противоречия его ТО устранила, все-то эксперименты она объяснила, да ещё кучу предсказаний сделала – и все они великолепно подтвердились на опыте! Ну, красная цена канонизированным версиям хорошо известна: «Боже мой, что скажет история?» - «Да не волнуйтесь, история солжёт, как всегда!»И точно! Никаких противоречий ТО не устранила: она их послала куда подальше, а от себя новых насадила, ласково называя их парадоксами.
Вся история физики, от начала времен и до наших дней, изложенная честно и беспристрастно. Естественно, как честный человек, описывая современное состояние предмета, автор приходит к вполне очевидному для наших современников (даже совершенно не знающих физики!) выводу:"Когда я слышу, что Галилей заложил основы научного физического метода, я понимаю: мелко же плавал этот Галилей! Куда ему до титанов, которые заложили и перезаложили всю физику с потрохами. Так оно всегда и выходит, когда любителей вытесняют профессионалы.".
Помните, как в школе мы все замирали словно кролики перед удавом перед законом про "всемирное тяготение" всех масс в мире друг к другу. Нам рисовали на доске двухэтажную формулу, а вместо её доказательства рассказывали анекдот про яблоко, поразившее в темечко спящего автора, который проснулся от удара и тут же этот самый закон записал. Особо сомневающимся в факте взаимного тяготения масс предлагалось для доказательства спрыгнуть откуда-нибудь повыше и посмотреть, что будет.Позже, в институте, доказательство этого закона тоже как-то проскакивали на большой скорости, без ненужных подробностей.И, как оказалось, далеко не случайно.
Квантовая теория приводит в трепет даже многих физиков. Ох, как они горды тем, что всякие там доморощенные опровергатели основ суются со своими умничаниями в самые разные области – и в классическую механику, и в электродинамику, и, в особенности, в теорию относительности – но никто не покушается на квантовую теорию! «Даже этим олухам ясно, - веселятся академики, - что без квантовой теории люди бы до сих пор жили в пещерах и бегали с каменными топорами!» Без квантовой теории, мол, не было бы лазеров – а без лазеров, девочки и мальчики, не было бы у вас таких балдёжных дискотек! Без квантовой теории, мол, не было бы понимания того, как движутся электроны в металлах и полупроводниках – а без этого понимания, девочки и мальчики, не было бы у вас ни компьютеров, ни мобильных телефончиков! Откуда девочкам и мальчикам знать, что всё это – шутки? Лазеры, компьютеры, мобильные телефончики – своим появлением они вовсе не обязаны квантовой теории.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.