Догонялки с теплотой - [12]

Шрифт
Интервал

Вот уж не от хорошей жизни допустили температурные зависимости теплоёмкостей – но жизнь от этого лучше не стала. Причём, ладно бы термохимики мучились сами – нет, они щедро поделились со специалистами по молекулярно-кинетической теории. В этой теории есть закон о равнораспределении энергии по степеням свободы: на каждую механическую степень свободы приходится энергия kT/2, где k – постоянная Больцмана, T – абсолютная температура. Отсюда следует, что энергия теплового движения молекул некоторого количества газа зависит только от температуры, будучи ей прямо пропорциональна. А теплоёмкость есть производная от тепловой энергии по температуре – и, в данном случае, теплоёмкость, очевидно, должна быть железобетонной константой. Фиг вам: незаметно подкрадываются термохимики и огорошивают: не всё так просто, ибо температурные зависимости теплоёмкостей им нужны позарез. Мол, делайте, что хотите, но через день – родите! Ну, давайте внимательно посмотрим на это выражение для теплоёмкости, в которое, кроме постоянной Больцмана, входят сомножителями число молекул нашей порции газа и число степеней свободы у молекулы. Что из них может зависеть от температуры? Не постоянная же Больцмана! И не число молекул. Может, от температуры зависит число степеней свободы у молекулы? Было три, а потом, при определённой температуре – опа! – и стало четыре! Нет, так тоже не пойдёт. Термохимикам надобно, чтобы теплоёмкость изменялась не скачками, а плавно – проходя все промежуточные значения. Представляете - p степеней свободы у молекулы! В этом месте классическая молекулярно-кинетическая теория потеряла дар речи – и, как обычно в таких ситуациях, помогла квантовая механика. Рост теплоёмкости водорода при увеличении температуры теоретики объяснили вот как. У молекул водорода, мол, спины ядер либо параллельны (это т.н. ортоводород), либо антипараллельны (это т.н. параводород). Теплоёмкости ортоводорода и параводорода, мол, разные, а процентное соотношение того и другого плавно изменяется с температурой – вот вам и плавная температурная зависимость теплоёмкости их смеси. Допустим, что это так – но что же вы, теоретики, случаем водорода ограничились? Фантазия заглохла, что ли? Так и быть, подскажем. Вводите ортоциклогексан и парациклогексан, ортодиметилбензол и парадиметилбензол – и так далее, по всей химической номенклатуре.

Чем физики обеспечили себе все эти приключения? А вот чем: непоколебимой верой в то, что причиной тепловых эффектов химических реакций являются изменения энергий химических связей у исходных и конечных веществ. Нашли, во что верить! Учит их жизнь, учит – всё больше фактов против этой веры появляется! А они заладили, как дятлы: «Наша вера правая! Мы ошибаться не могём! А факты нам – по фиг!» И опять за своё: тепло при реакции выделяется потому, мол, что молекулы продуктов связаны сильнее, чем молекулы реагентов. Эта реакция идёт потому, мол, что ей идти выгодно: увеличение энергии связей означает скатывание в энергетическую ямочку! Да неужели? Тогда реакция с поглощением тепла идёт потому, что ей идти невыгодно – ведь уменьшение энергии связей означает закатывание на энергетический пригорочек! Да уж, экономическими понятиями тут не обойтись… И потом, бывают ведь «выгодные» реакции, при которых не происходит простого «скатывания в энергетическую ямочку»: сначала нужно разорвать связи в реагентах – а они тоже имеют запас устойчивости. Т.е., следует сначала закатиться на пригорочек, а уже потом – можно скатиться в ямочку. Вот оно, озаренье-просветленье! Если новая ямочка глубже прежней – тепло, мол, выделяется! А если мельче – наоборот, поглощается! Выгодно или невыгодно – на это уже наплевать, поскольку всё свелось к чистой арифметике. Чтобы закрепить этот продвиг, сделали вот что: энергию, соответствующую тому самому пригорочку, через который переваливает реакция, назвали энергией активации. И идеологию насадили: в реакцию вступают не абы какие сблизившиеся молекулы, а только самые достойные: которые имеют подходящую энергию активации. А берётся она, например, из-за теплового движения: молекулы реагентов вмазываются друг в друга так, что получается «активированный комплекс», а распадается он уже на новые молекулы, на продукты. Но, при энергии активации в несколько эВ, как же идут реакции при комнатной температуре, когда средняя энергия теплового движения молекулы составляет несколько сотых эВ? Нам поясняют, что при этом в реакцию вступают лишь самые быстрые молекулы. О, как! А что же вы скажете про реакции, которые идут до конца, при которых реагенты полностью превращаются в продукты? Специалисты и здесь нашли мудрое решение: ничего не говорить про такие реакции, т.е. помалкивать. Тогда уж пусть заодно помалкивают про то, куда они со стыда девают концепцию энергии активации при описании химических равновесий. Речь о таком динамическом состоянии системы, при котором количества элементарных актов прямой и обратной реакций одинаковы, а температура и давление в системе остаются постоянными. Заметим: здесь исходникам реакции, идущей с выделением тепла, проще «забраться на пригорочек» энергии активации, чем исходникам реакции, идущей с поглощением тепла. Поэтому, при конкретной температуре, равенство скоростей прямой и обратной реакций было бы возможно лишь когда количество исходников реакции с поглощением тепла больше количества исходников реакции с выделением тепла. Но бывает и наоборот – например, равновесия при промышленном синтезе аммиака из азота и водорода. Только это не отражается на трогательных рассуждениях физхимиков насчёт управления скоростями химических реакций: «Чтобы повысилась скорость реакции, надо снизить энергию активации!» Видите – в рифму даже. Правда, рифма-то есть, а смысла нету. Ибо, если сказать: «надо, чтобы маленькие зелёные человечки шустрее забегали» - смысла будет столько же.


Еще от автора О Х Деревенский
Фиговые листики теории относительности

Канонизированная версия появления теории относительности (ТО), вкратце, такова. На рубеже XIX-XX веков был в оптике движущихся тел жуткий кризис. Физики захлебнулись в противоречиях, сидели в прострации и не знали, что делать дальше. Тут-то Эйнштейн и вывел этих недотёп на путь истинный. Все-то противоречия его ТО устранила, все-то эксперименты она объяснила, да ещё кучу предсказаний сделала – и все они великолепно подтвердились на опыте! Ну, красная цена канонизированным версиям хорошо известна: «Боже мой, что скажет история?» - «Да не волнуйтесь, история солжёт, как всегда!»И точно! Никаких противоречий ТО не устранила: она их послала куда подальше, а от себя новых насадила, ласково называя их парадоксами.


История физики, изложенная курам на смех

Вся история физики, от начала времен и до наших дней, изложенная честно и беспристрастно. Естественно, как честный человек, описывая современное состояние предмета, автор приходит к вполне очевидному для наших современников (даже совершенно не знающих физики!) выводу:"Когда я слышу, что Галилей заложил основы научного физического метода, я понимаю: мелко же плавал этот Галилей! Куда ему до титанов, которые заложили и перезаложили всю физику с потрохами. Так оно всегда и выходит, когда любителей вытесняют профессионалы.".


Бирюльки и фитюльки всемирного тяготения

Помните, как в школе мы все замирали словно кролики перед удавом перед законом про "всемирное тяготение" всех масс в мире друг к другу. Нам рисовали на доске двухэтажную формулу, а вместо её доказательства рассказывали анекдот про яблоко, поразившее в темечко спящего автора, который проснулся от удара и тут же этот самый закон записал. Особо сомневающимся в факте взаимного тяготения масс предлагалось для доказательства спрыгнуть откуда-нибудь повыше и посмотреть, что будет.Позже, в институте, доказательство этого закона тоже как-то проскакивали на большой скорости, без ненужных подробностей.И, как оказалось, далеко не случайно.


Фокусы-покусы квантовой теории

Квантовая теория приводит в трепет даже многих физиков. Ох, как они горды тем, что всякие там доморощенные опровергатели основ суются со своими умничаниями в самые разные области – и в классическую механику, и в электродинамику, и, в особенности, в теорию относительности – но никто не покушается на квантовую теорию! «Даже этим олухам ясно, - веселятся академики, - что без квантовой теории люди бы до сих пор жили в пещерах и бегали с каменными топорами!» Без квантовой теории, мол, не было бы лазеров – а без лазеров, девочки и мальчики, не было бы у вас таких балдёжных дискотек! Без квантовой теории, мол, не было бы понимания того, как движутся электроны в металлах и полупроводниках – а без этого понимания, девочки и мальчики, не было бы у вас ни компьютеров, ни мобильных телефончиков!  Откуда девочкам и мальчикам знать, что всё это – шутки? Лазеры, компьютеры, мобильные телефончики – своим появлением они вовсе не обязаны квантовой теории.


Рекомендуем почитать
Покоренный электрон

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания

Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Климатическая наука: наблюдения и модели

Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.