Дмитрий Иванович Менделеев - [23]

Шрифт
Интервал

Природный уран также является смесью различных изотопов. Большую часть смеси составляет тяжелый изотоп, в ядре которого, кроме 92 протонов, имеется 146 нейтронов — всего 238 частиц. Это так называемый уран 238 (U>238). Наряду с ним в природном уране имеется небольшое количество (около 0,7 %) более легкого изотопа, в ядре которого вместе с 92 протонами содержится 143 нейтрона — всего 235 частиц. Этот более легкий изотоп урана называется уран 235 (U>235).

Теперь нам придется вернуться к радиоактивному излучению. Выше говорилось об альфа-лучах. Они представляют собой поток альфа-частиц, каждая из которых состоит из двух протонов и двух нейтронов. Таким образом, альфа-частица — это ядро гелия. Мы писали и о других лучах, испускаемых радиоактивными телами, — бета-лучах. Бета-лучи — это поток электронов. Радиоактивное излучение происходит вследствие распада атомных ядер. Альфа-распад (т. е. распад, в результате которого возникают альфа-лучи) означает, что из ядра данного элемента вылетает альфа-частица, т. е. ядро гелия. Иными словами, при альфа-распаде ядро теряет четыре частицы: два протона и два нейтрона. Потеря четырех частиц означает уменьшение атомного веса на четыре единицы. При бета-распаде, т. е. при вылете из атомного ядра электрона, образуется новое ядро почти с тем же атомным весом (масса электрона очень мала), но при этом заряд ядра становится на единицу больше. Дело в том, что при бета-распаде один из нейтронов превращается в протон плюс электрон; электрон-то и вылетает из ядра, а образовавшийся вместо нейтрона протон увеличивает заряд ядра на единицу. Поэтому после бета-распада каждый элемент оказывается уже в другой клетке менделеевской таблицы, так как его порядковое число (равное положительному заряду атома) становится на единицу больше. Иначе говоря, элемент переходит направо, в следующую клетку менделеевской таблицы. Напротив, при альфа-распаде атомное ядро теряет два нейтрона и два протона, иначе говоря — два положительных заряда, поэтому число протонов и вместе с тем заряд ядра уменьшается на две единицы, следовательно, элемент передвигается на две клетки налево, приближаясь к началу периодической таблицы. Если в ядро влетает нейтрон — частица, электрически незаряженная, то заряд ядра не меняется, а масса ядра увеличивается примерно на единицу атомного веса. Таким образом, элемент остается в той же клетке периодической системы и его порядковый номер не изменяется. Однако, поскольку число нейтронов и, следовательно, масса ядра увеличивается при этом на единицу, перед нами оказывается новый, более тяжелый изотоп того же элемента.

Нужно сказать, что попадания протонов в ядра могут происходить лишь при определенных условиях: протон заряжен положительно, так же как и ядро атома, поэтому ядро и протон отталкиваются друг от друга и протон может попасть в ядро лишь при движении с большой скоростью. Поэтому бомбардировка атомного ядра протонами требует, чтобы летящим протонам была сообщена очень большая энергия.

Бомбардировка атомных ядер протонами, нейтронами или альфа-частицами широко применялась в начале 30-х годов нашего века и привела к ряду важных в практическом и теоретическом отношении открытий. Значительные успехи были достигнуты после того, как для бомбардировки ядер начали применять нейтроны. Нейтроны не имеют электрического заряда, они не испытывают отталкивания со стороны атомного ядра и легче попадают в цель.

В самом конце 30-х годов нашего века с помощью нейтронной бомбардировки были получены результаты, все значение которых можно было оценить только впоследствии. Благодаря работам немецких ученых О. Гана и Ф. Штрассмана, а также австрийского физика Лизы Мейтнер выяснилось, что при бомбардировке нейтронами ядер урана ядро раскалывается на приблизительно равные части. Эти части ядер, имея положительный заряд, отталкиваются друг от друга с громадной силой. Поэтому деление ядер урана — источник чрезвычайно большого количества энергии. Ее можно было получить только в том случае, если реакция распада, раз начавшись, продолжалась бы сама собой, иначе процесс для своего продолжения требовал бы затраты большой энергии со стороны.

Подобная цепная, непрерывная и самоускоряющаяся, реакция деления атомных ядер урана была получена главным образом благодаря работам Фредерика Жолио-Кюри, который в 1939 году одним из первых открыл, что при раскалывании (делении) ядра урана (как впоследствии выяснилось, урана 235) выделяются свободные нейтроны, которые могут попасть в соседние ядра урана и т. д. и вызвать непрерывную и быстро ускоряющуюся реакцию. Деление урана будет продолжаться в быстро растущих масштабах. Когда речь идет о делении атомного ядра урана, для начала цепной реакции даже и не нужен внешний источник нейтронов. Советские ученые Г. Н. Флеров и К. А. Петржак открыли важное свойство урана. Оказывается, ядра урана время от времени самопроизвольно делятся. Это происходит крайне редко, но этого достаточно, чтобы в куске урана началась цепная реакция деления.

В дальнейшем усилия физиков были направлены на то, чтобы осуществить цепную реакцию деления урана. Дело в том, что наиболее распространенный в природных условиях изотоп — уран 238 — захватывает выделившиеся нейтроны, и они остаются в атомных ядрах этого изотопа, не приводя к делению и появлению новых нейтронов. Цепная реакция могла бы осуществляться, если бы удалось выделить из природного урана легкий изотоп — уран 235. Но оба изотопа химически почти не отличаются друг от друга, и их трудно разделить. В конце концов это удалось сделать. Одновременно физики пришли к другому результату, также значительно приблизившему возможность получения и использования атомной энергии. Уран 238, захватывая нейтроны, переходит в новый, более тяжелый изотоп — уран 239. Этот радиоактивный изотоп испускает бета-частицы, в результате чего, как мы знаем, увеличивается порядковый номер, иначе говоря, элемент переходит в следующую клетку периодической таблицы, получается новый элемент с порядковым номером 93 (порядковый или атомный номер обычно обозначают буквой Z). Новый элемент получил название нептуния. Он также радиоактивен и испытывает бета-распад. Из него образуется новый элемент плутоний с порядковым номером 94. Этот элемент распадается медленно, период его полураспада около 24 тысяч лет. Наиболее важным для получения атомной энергии является то, что плутоний 239, как и уран 235, делится под влиянием столкновений с нейтронами и при делении каждого ядра вылетает в среднем два нейтрона. В этом отношении плутоний ведет себя так же, как и уран 235: деление ядер плутония приобретает характер ускоряющейся цепной реакции.


Еще от автора Борис Григорьевич Кузнецов
Современная наука и философия: Пути фундаментальных исследований и перспективы философии

От издателей:В книге Б. Г. Кузнецова, которая является продолжением ранее изданных его работ («Разум и бытие», «Философия оптимизма», «Ценность познания» и др.), анализируется взаимодействие философии и фундаментальных научных исследований в условиях научно-технической революции, показывается, как влияет этот прецесс на развитие современных представлений о мире и его познании; в каких направлениях будет идти воздействие философии на науку в будущем. Автор затрагивает ряд вопросов, служащих предметом дискуссий среди ученых.Книга рассчитана на преподавателей, студентов вузов, научных работников, всех интересующихся философскими проблемами современной науки.От автора fb2-файла:Это первая отсканированная мною книга.


Путешествие через эпохи

Путешествуя с графом Калиостро на машине времени, читатель встречается с великими мыслителями разных времен и эпох. Он как бы слышит их перекличку и видит живую связь времен и поколений, преемственность в развитии культуры, ее «инварианты» и специфику сменявших одна другую эпох.


Ньютон

Книга рассказывает о жизненном и творческом пути великого английского мыслителя, физика, астронома и математика Исаака Ньютона (1643—1727). Ньютон является одним из крупнейших представителей механистического материализма в естествознании XVII—XVIII вв., его основные идеи оказали большое влияние на философскую мысль, науку и культуру.Книга рассчитана на широкий круг читателей.


Эйнштейн. Жизнь, смерть, бессмертие

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Философия оптимизма

Книга посвящена философским проблемам, содержанию и эффекту современной неклассической науки и ее значению для оптимистического взгляда в будущее, для научных, научно-технических и технико-экономических прогнозов.


Джордано Бруно и генезис классической науки

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Рекомендуем почитать
Моя судьба. История Любви

Звезда мировой величины Мирей Матье стала знаменитой в 19 лет. Ее парижский теледебют вызвал триумф. Вскоре ее уже знал весь мир, и она была признана наследницей Эдит Пиаф. Вот уже несколько десятилетий певица с неизменными аншлагами гастролирует по всей планете, сочиняет песни, выпускает альбом за альбомом — слава ее не меркнет. Дочь простого каменщика из Авиньона, она стала самой известной француженкой в мире, а у нас в России — символом Франции, кумиром миллионов.Мирей Матье никогда не была замужем, у нее нет детей.


Тот век серебряный, те женщины стальные…

Русский серебряный век, славный век расцвета искусств, глоток свободы накануне удушья… А какие тогда были женщины! Красота, одаренность, дерзость, непредсказуемость! Их вы встретите на страницах этой книги — Людмилу Вилькину и Нину Покровскую, Надежду Львову и Аделину Адалис, Зинаиду Гиппиус и Черубину де Габриак, Марину Цветаеву и Анну Ахматову, Софью Волконскую и Ларису Рейснер. Инессу Арманд и Майю Кудашеву-Роллан, Саломею Андронникову и Марию Андрееву, Лилю Брик, Ариадну Скрябину, Марию Скобцеву… Они были творцы и музы и героини…Что за характеры! Среди эпитетов в их описаниях и в их самоопределениях то и дело мелькает одно нежданное слово — стальные.


Лучшие истории любви XX века

Эта книга – результат долгого, трудоемкого, но захватывающего исследования самых ярких, известных и красивых любовей XX века. Чрезвычайно сложно было выбрать «победителей», так что данное издание наиболее субъективная книга из серии-бестселлера «Кумиры. Истории Великой Любви». Никого из них не ждали серые будни, быт, мещанские мелкие ссоры и приевшийся брак. Но всего остального было чересчур: страсть, ревность, измены, самоубийства, признания… XX век начался и закончился очень трагично, как и его самые лучшие истории любви.


Человек проходит сквозь стену. Правда и вымысел о Гарри Гудини

Об этом удивительном человеке отечественный читатель знает лишь по роману Э. Доктороу «Рэгтайм». Между тем о Гарри Гудини (настоящее имя иллюзиониста Эрих Вайс) написана целая библиотека книг, и феномен его таланта не разгадан до сих пор.В книге использованы совершенно неизвестные нашему читателю материалы, проливающие свет на загадку Гудини, который мог по свидетельству очевидцев, проходить даже сквозь бетонные стены тюремной камеры.


Клан

Сегодня — 22 февраля 2012 года — американскому сенатору Эдварду Кеннеди исполнилось бы 80 лет. В честь этой даты я решила все же вывесить общий файл моего труда о Кеннеди. Этот вариант более полный, чем тот, что был опубликован в журнале «Кириллица». Ну, а фотографии можно посмотреть в разделе «Клан Кеннеди», где документальный роман был вывешен по главам.


Летные дневники. Часть 10

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Оружие авиации

В книге кратко излагаются вопросы возникновения авиационного вооружения, рассматриваются основы теории воздушной стрельбы и бомбометания, дается характеристика авиационных боеприпасов и различных прицельных устройств, применяемых на современных боевых самолетах. В книге также отводится место вопросам применения авиацией ракетного оружия. Современное состояние авиационного вооружения и тенденции его развития освещаются по зарубежным материалам, опубликованным в последние годы в журналах «Авиэйшн уик», «Флайт», «Орднанс» и др. Книга предназначается для солдат, матросов, сержантов, старшин, курсантов военных училищ и школ всех родов войск и видов вооруженных сил, членов ДОСААФ и для широкого круга молодежи, интересующейся авиацией. Книга может быть также полезной и для офицеров Советской Армии и Военно-Морского Флота.


Дарвинизм и религия

В книге проф. Г. В. Платонова «Дарвинизм и религия» говорится, что на протяжении многих столетий загадка появления на Земле разнообразных видов животных и растений, их изумительной приспособленности к среде умело использовалась церковью и ее прислужниками для «доказательства» существования бога. Дать ей вполне научное, опирающееся на многочисленные факты, решение удалось только великому английскому естествоиспытателю Чарлзу Дарвину (1809–1882). Своей теорией Дарвин нанес удар огромной силы по религии.


Физические основы получения атомной энергии

В настоящей книжке изложены основные вопросы ядерной физики, знание которых необходимо для понимания особенностей ядерной энергии и тех физических принципов, которые используются или предполагаются использоваться в ближайшем будущем для ее производства. Книжка рассчитана на широкий круг военных читателей со средним образованием, стремящихся познакомиться с новой областью науки, имеющей большое практическое значение.


О неслышимых звуках

Открытые в начале XX века ультразвуки нашли широкое применение в самых разнообразных областях науки и техники. Они помогают обнаруживать подводные лодки и различные препятствия на дне морей и рек, используются для промера глубин, для контроля качества металлических конструкций и деталей, для очистки воздуха, в медицине и фармацевтической промышленности и т. д. О том, что такое ультразвуковые волны, о способах их получения, свойствах и применении и рассказывает книга специалиста в области ультразвуков профессора доктора химических наук Бориса Борисовича Кудрявцева «О неслышимых звуках».