Диссимметрия жизни - симметрия рака - [17]

Шрифт
Интервал

< R, то накладывая квадрат на разные участки бесконечной сетки, нельзя сказать, существуют в этой сетке только конечные кластеры или они уже слились и образуют бесконечный кластер. То есть мы пришли к пониманию того, что изучение протекания в квадрате конечного размера позволяет лишь определить ширину критической области.Однако все сказанное полностью переносится на задачи объемные. Сеточная модель бесконечного кластера позволяет вывести формулу и связать временной индекс с индексом радиуса корреляции. Электрический ток течет только по бесконечному кластеру, причем именно по его скелету. В мертвых концах, прикрепленных к скелету лишь с одной стороны, тока нет. Если сделать электрический ток достаточно сильным, так чтобы проволока, по которой он течет, светилась, то в темноте скелет бесконечного кластера можно наблюдать визуально, как освещенные каналы на темном фоне. Вдали от порога вся сетка светится более или менее равномерно, вблизи порога расстояние между освещенными каналами увеличивается и, наконец, на самом пороге свечение совсем прекращается – ток через систему прервался. То же самое мы видим в раковых структурах. Они не светятся. Это говорит о достижении системой пороговых критических областей, и о том, что его «квадрат» влияет на всю систему координат. Теперь подходим, пожалуй, к самому интересному моменту в теории протекания. Согласно современным представлениям, критические индексы для всех задач в пространстве с одной и той же размерностью одинаковы. В чем физические причины универсальности индексов? Видимо, в том, что индексы определяются структурой кластеров в окрестности порога протекания. Основную роль при этом играют геометрические свойства кластеров, проявляющиеся на больших расстояниях (порядка радиуса корреляции). Вблизи пороговой точки эти расстояния намного превосходят период решетки (в случае решеточных задач) или радиус сферы (в случае задачи сфер). Поэтому геометрия кластеров не зависит от того, на какой решетке задана задача. Задача может быть вообще не решеточной, а заданной на узлах, случайно расположенных в пространстве, а это тоже не повлияет на структуру больших кластеров. Но, разумеется, размерность пространства очень сильно сказывается на геометрии кластеров, так как обеспечить, например, «развязку» линий в трехмерном пространстве гораздо легче, чем в двумерном. По этим причинам критические индексы зависят от размерности пространства. Интересно, что изменение критических индексов с увеличением размерности пространства происходит до размерности шесть. Начиная с шестимерного пространства, индексы не меняются с увеличением размерности. При размерности больше шестизадача о критических индексах значительно упрощается и допускает точное решение. Итак, в отличие от порогов протекания, которые существенно зависят от типа задачи, критические индексы обладают определенной универсальностью. Отсюда следует простой вывод. Если результаты физического эксперимента трактуются с помощью теории протекания, а микроскопическая структура исследуемой системы не вполне ясна, то прежде всего следует сравнивать с теорией критические индексы, так как они почти ни от чего не зависят. Именно так и поступают при анализе экспериментальных данных по электропроводности в гетерогенных материалах. Идея универсальности критических индексов заимствована теорией протекания у теории фазовых переходов второго рода (к фазовым переходам второго рода относятся, например, происходящие при повышении температуры переход металла из сверхпроводящего состояния в нормальное и переход ферромагнетика в неферромагнитное состояние). Вблизи точки фазового перехода второго рода так же, как вблизи порога протекания, образуются области большогоразмера, отличающиеся друг от друга своими свойствами. Разница состоит в том, что границы этих областей не «заморожены», как в теории протекания, а меняются со временем благодаря тепловому движению. Размер областей также называется радиусом корреляции. Из теории фазовых переходов пришла и другая важная идея – гипотеза подобия, которая заключается в том, что при приближении к порогу протекания крупномасштабнаягеометрия системы преобразуется подобнымобразом, причем все линейные размеры увеличиваютсяпропорционально радиусу корреляции. Заметим, что модель Шкловского-де Жена удовлетворяет гипотезе подобия, однако гипотеза подобия гораздо шире. Она касается не только скелета бесконечного кластера и вообще не предполагает разбиения на скелет и мертвые концы. Теперь становится понятным, почему раковые структуры не поддаются коррекции ни одним из видов лечения. Раковые структуры (решетки) после перехода второго порядка образуют области большого размера, после чего они не зависят от границ протекания... В подобных условиях «расслоение» клатратов воды и белков идет по его сценарию... Даже здесь, на уровне геометрии клатратов, рак также занимает господствующие высоты. Кажется, практически ничего невозможно предпринять. Однако, это не совсем так... Теперь вновь «поднимемся» из глубин материи, и остановимся на ее «средних» этажах... На них обретается т. н. «живое вещество». Автоморфизм подсказывает нам и подтверждает ранее высказанные мысли о том, что евклидова геометрия господствует до 32-х делений яйца. Потом делением заведуют более «размытые» кластерные законы... Симметрия у живого, как мы помним, запрещенная, диссимметрия полная, энтропия отрицательная, а поляризация как у кристаллов. На снимке представлена яйцеклетка в «объятиях» кластерной геометрии (Рис. 4).

Еще от автора Михаил Владимирович Кутушов
Зеркальные болезни. Рак, диабет, шизофрения, аллергия

В книге представлена и дополнена гипотеза о подобии Живой субстанции и Вселенной. Дано описание подобий, автоморфизма, триединства, дуализма, спиральности и других морфологических структур, участвующих в самоорганизации неживой и живой природы. Высказана новая гипотеза о происхождении «хиральной катастрофы», т. е. причины возникновения диссимметрии Живого вещества. Предпринята попытка доказать, что фигуры сакральной геометрии, являясь основой (архетипами) пространства, порождают все формы материи, в том числе и живую.


Рекомендуем почитать
Краткая история насекомых. Шестиногие хозяева планеты

«Любая история, в том числе история развития жизни на Земле, – это замысловатое переплетение причин и следствий. Убери что-то одно, и все остальное изменится до неузнаваемости» – с этих слов и знаменитого примера с бабочкой из рассказа Рэя Брэдбери палеоэнтомолог Александр Храмов начинает свой удивительный рассказ о шестиногих хозяевах планеты. Мы отмахиваемся от мух и комаров, сражаемся с тараканами, обходим стороной муравейники, что уж говорить о вшах! Только не будь вшей, человек остался бы волосатым, как шимпанзе.


…А вослед ему мертвый пес: По всему свету за бродячими собаками

Это книга о бродячих псах. Отношения между человеком и собакой не столь идилличны, как это может показаться на первый взгляд, глубоко в историю человечества уходит достаточно спорный вопрос, о том, кто кого приручил. Но рядом с человеком и сегодня живут потомки тех первых неприрученных собак, сохранившие свои повадки, — бродячие псы. По их следам — не считая тех случаев, когда он от них улепетывал, — автор книги колесит по свету — от пригородов Москвы до австралийских пустынь.Издание осуществлено в рамках программы «Пушкин» при поддержке Министерства иностранных дел Франции и посольства Франции в России.


Муравей-путешественник

Всего в мире известно 15 тысяч видов муравьев. Это не столь уж много, если сравнить с числом других видов насекомых. Зато по количеству муравьи самые многочисленные на земле насекомые. Их больше, чем всех остальных животных, вместе взятых.В этой книге рассказывается о тех муравьях, которых автор наблюдал в горах Тянь-Шаня, преимущественно около восточной части озера Иссык-Куль, в местах, где провел свои последние дни известный натуралист Н. М. Пржевальский.Рисунки автора.


Лесное урочище «Чертово городище»

Автор и составитель буклетов серии «Природу познавая, приумножай богатство родного края!»САМОЙЛОВ Василий Артемович – краевед, натуралист и фольклорист, директор Козельского районного Дома природы. Почетный член Всероссийского ордена Трудового Красного Знамени общества охраны природы.


Сравнительный анализ различных форм социального обучения у животных

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Экспериментальные исследования способностей животных к количественным оценкам предметного мира

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.