Дилемма заключенного и доминантные стратегии. Теория игр - [7]
Парадокс Хупера гласит, что из двух треугольников и двух трапеций, образующих квадрат, можно составить прямоугольник большей площади.
Игры и занимательная математика в XIX и XX веках
Игры и занимательная математика непрерывно развивались в течение XIX и начала XX веков, и спектр задач неуклонно расширялся. Среди авторов XIX века следует упомянуть Джеймса Джозефа Сильвестра (1814—1897), Льюиса Кэрролла (1832—1898), Эдуарда Люка (1842—1891) и Уильяма Роуза Болла (1850—1925). Рассказать обо всех подробно просто невозможно, и далее мы остановимся на книгах Кэрролла и Люка.
Преподобный Чарльз Латуидж Доджсон, известный как Льюис Кэрролл, автор сказок об Алисе, был математиком и профессором Оксфорда. Он обожал занимательную математику и планировал издать серию книг под названием Curiosa Mathematica («Математические курьезы»). Завершить этот труд ему не удалось. Во второй книге этой серии под названием «Полуночные задачи, придуманные в часы бессонницы» он демонстрирует выдающиеся способности, приводя решения как простейших и шутливых («Есть двое часов. Одни стоят, другие опаздывают на одну минуту. Какие часы показывают время точнее?»), так и довольно сложных задач («Даны три произвольные точки на бесконечной плоскости. Какова вероятность того, что они образуют тупоугольный треугольник?»).
Знаменитый автор «Алисы в стране чудес»Льюис Кэрролл также придумал бесчисленное множество математических игр.
Кэрролл был не только гениальным автором математических и логических игр, но и великим знатоком английского языка, что можно увидеть в его книгах об Алисе и в многочисленных придуманных им играх со словами. Одна из них, «Лестница слов», заключается в том, что нужно построить цепочку из слов с одинаковым количеством букв, каждый раз меняя по одной букве в слове. Например, можно превратить козу в волка: КОЗА — ПОЗА — ПОЛА — ПОЛК — ВОЛК.
Наиболее значимая роль в развитии математических игр принадлежит французскому математику Эдуарду Люка, специалисту по теории чисел и в особенности по числам Фибоначчи. Он является автором великолепного сборника Recreations mathematiques («Математические развлечения»). Эта книга содержит 35 разделов, посвященных математическому анализу игр и занимательным задачам. Среди игр, придуманных Люка, выделяются «Ханойские башни». Сам Люка, чтобы создать завесу тайны, на презентации игры в 1883 году приписал ее авторство китайскому профессору Клаусу (Claus) из колледжа Ли-Су-Стьян (Li Sou Stain). Обратите внимание, что имя несуществующего профессора — анаграмма фамилии самого Люка (Lucas), а название колледжа — анаграмма колледжа Сен-Луи (Saint Louis), где Люка преподавал математику.
Одна из последних книг XIX века по занимательной математике — Mathematical Recreations and Essays («Математические эссе и развлечения», 1892) Уолтера Роуза Болла, которая в XX веке стала одной из популярнейших книг по этой теме, выдержав более 12 изданий. Редактором одного из изданий в 1938 году выступил геометр Гарольд Коксетер.
Начальное положение колец в игре «Ханойские башни».
Одна из игр, о которых пишет Эдуард Люка в третьем томе своей книги о занимательной математике, принадлежит к типу игр, в которых нужно окружить своими фишками фишки другого игрока. К таким играм относятся «Охота на зайца» из книги Альфонсо X Мудрого и «Лиса и гуси» — очень популярная в викторианской Англии игра, известная еще с XV века.
В «военных играх» отсутствует элемент случайности. Эта игра рассчитана на двух игроков и была очень популярной среди французских военных в XIX веке. У одного игрока три белых фишки, у другого (ему принадлежит первый ход) — одна черная фишка. Фишки располагаются на доске из 11 клеток (начальное положение фишек показано на рисунке ниже). Задача белых фишек — окружить черную, которая пытается сбежать. Фишки могут перемещаться по пустым клеткам вдоль линий игрового поля, но белые фишки не могут отступать, в то время как черная может двигаться в любом направлении.
Игра кажется простой, и при первом знакомстве может показаться, что черной фишке легко скрыться от белых. Но тщательный анализ, проведенный Эдуардом Люка, показывает, что существует выигрышная стратегия для белых фишек — у них всегда есть в запасе минимум один ход, который мешает черной фишке сбежать. После изучения вариантов развития игры становится ясно, что максимальное число ходов равно 12, и количество существенно различных игр сокращается до 16. Кажется невероятным, что эта небольшая игра требует такой выверенности ходов от играющего белыми фишками. Он всегда будет выигрывать, если ему известна выигрышная стратегия.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Можно ли выразить красоту с помощью формул и уравнений? Существует ли в мире единый стандарт прекрасного? Возможно ли измерить гармонию с помощью циркуля и линейки? Математика дает на все эти вопросы утвердительный ответ. Золотое сечение — ключ к пониманию секретов совершенства в природе и искусстве. Именно соблюдение «божественной пропорции» помогает художникам достигать эстетического идеала. Книга «Золотое сечение. Математический язык красоты» открывает серию «Мир математики» — уникальный проект, позволяющий читателю прикоснуться к тайнам этой удивительной науки.
В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.
Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.
Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.