Дилемма заключенного и доминантные стратегии. Теория игр - [35]
Фотография Оскара Моргенштерна, который вместе с Джоном фон Нейманом является создателем теории игр.
Математика сотрудничества: игры с ненулевой суммой
Чтобы показать разницу между играми с нулевой и с ненулевой суммой, рассмотрим ситуацию, связанную с распространением рекламы. Две компании, А и Б, хотят прорекламировать свою продукцию. В обе компании поступает предложение от телеканала: рекламу можно показать днем (когда ее увидят 40% телезрителей) или вечером (тогда ее увидят 60% зрителей), причем можно выбрать только один из предложенных вариантов. Известно, что дневная и вечерняя аудитории не пересекаются. Если обе компании закажут рекламу на одно и то же время, то их продукцию купят 30% зрителей, включивших телевизор в это время, и никто из тех, кто смотрел телевизор в другое время. Если же компании закажут рекламу на разное время, то охватят 50% аудитории, которая в тот момент находилась у экранов. Какое решение оптимально для каждой компании? Будет лучше проконсультироваться с другой компанией или скрыть свои намерения?
Эту игру можно выразить в виде платежной матрицы, значения которой будут соответствовать доле аудитории. Однако в этом случае в каждую ячейку таблицы нельзя поместить какое-то одно значение, так как выигрыш одной компании не равен проигрышу другой и каждая компания будет иметь свою выгоду. По этой причине элементами матрицы будут пары значений. Первое число в каждой паре — выгода компании А, второе — выгода компании Б в зависимости от стратегий, выбранных обеими компаниями.
Если А и Б запустят рекламу днем, то каждой компании достанется 12% аудитории (30% от 40%). Если рекламные ролики выйдут в разное время, то результаты будут симметричны: если А запустит рекламу днем, а Б — вечером, то А получит 20% (половину от 40%), компания Б — 30% (половину от 60%). Если обе компании в этом случае сменят стратегии на прямо противоположные, противоположными окажутся и результаты.
Для анализа этой игры аналогично тому, как мы это делали ранее, нужно рассматривать две матрицы (с выигрышами каждого игрока), учитывая, что каждый игрок стремится максимально увеличить свой выигрыш в соответствии с платежной матрицей.
С учетом того, что матрицы симметричны и что стратегии А указаны в строках, а стратегии Б — в столбцах, анализ обеих матриц проводится аналогичным образом. Можно выполнить те же действия, что и для игр с нулевой суммой: седловая точка отсутствует (максиминное значение равно 18, минимаксное — 12), поэтому нужно найти смешанную стратегию, чтобы определить цену игры для игрока А. Эта стратегия такова: нужно использовать стратегию 1 (выпускать рекламу днем) с вероятностью 3/5 и стратегию 2 (выпускать рекламу ночью) с вероятностью 2/5. Таким образом мы получим цену 19,2 (средний выигрыш за партию). Аналогично для игрока Б (с учетом симметрии): в каждых пяти партиях он должен произвольным образом два раза выбрать стратегию 1 и три раза — стратегию 2, при этом его средний выигрыш будет тем же. Пока что нет никаких отличий от прошлых примеров, и читатель может посчитать, что мы определили оптимальную стратегию для каждого игрока и что игра решена.
Однако более подробный анализ игры показывает, что в этом случае каждый из двух игроков ожидает выиграть больше, и при этом выигрыш другого игрока останется прежним. Поэтому предыдущее решение не является оптимальным, и цена игры, найденная для оптимальных смешанных стратегий, используемых в играх с нулевой суммой, не всегда является наибольшей.
Это происходит потому, что оптимальные стратегии в играх с нулевой суммой основаны на ограничении или уменьшении выигрыша соперника. Если игра имеет нулевую сумму, то уменьшение выигрыша одного игрока равносильно увеличению выигрыша другого, но в нашем случае это не так. Допустим, что компания Б не будет использовать смешанную стратегию и всегда будет применять стратегию 2 (выпуск рекламы вечером), в то время как компания Б будет придерживаться смешанной стратегии. В этом случае компания А в среднем получит 30 • 2/5 + 18 • 3/5 = 22,8, а компания Б — по-прежнему 19,2. Заметим, что выигрыш Б не изменился, а выигрыш А возрос. В играх с нулевой суммой это невозможно. Очевидно, компания Б может действовать подобным образом и всегда использовать чистую стратегию 2, ожидая, что А будет придерживаться смешанной стратегии. В этом случае результат Б возрастет, результат А останется на прежнем уровне.
Но что произойдет, если обе компании используют чистую стратегию 2? Обе получат лишь по 18% аудитории, выигрыш обоих игроков уменьшится одинаково. Кажется, что мы зашли в тупик: каждая компания может выиграть больше, не повредив конкуренту, но если оба игрока захотят получить больше, то, напротив, выиграют меньше среднего ожидаемого значения.
Однако возможен и другой вариант. Допустим, что оба игрока заключили соглашение, чтобы не попасть одновременно в клетки с наименьшим выигрышем, то есть не размещать рекламу в одно и то же время. В этом случае каждая компания получит больше, при этом выигрыши компаний могут стать равными: если компания А будет чередовать стратегии 1 и 2, а компания Б — чередовать стратегии 2 и 1, то средний выигрыш для обеих компаний будет равен 25% за партию. Компания А будет попеременно получать 20 и 30 процентов, компания Б — 30 и 20. Это решение кажется оптимальным и, более того, является равновесным.
Под именем лорда Кельвина вошел в историю британский ученый XIX века Уильям Томсон, один из создателей экспериментальной физики. Больше всего он запомнился своими работами по классической термодинамике, особенно касающимися введения в науку абсолютной температурной шкалы. Лорд Кельвин сделал вклад в развитие таких областей, как астрофизика, механика жидкостей и инженерное дело, он участвовал в прокладывании первого подводного телеграфного кабеля, связавшего Европу и Америку, а также в научных и философских дебатах об определении возраста Земли.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Можно ли выразить красоту с помощью формул и уравнений? Существует ли в мире единый стандарт прекрасного? Возможно ли измерить гармонию с помощью циркуля и линейки? Математика дает на все эти вопросы утвердительный ответ. Золотое сечение — ключ к пониманию секретов совершенства в природе и искусстве. Именно соблюдение «божественной пропорции» помогает художникам достигать эстетического идеала. Книга «Золотое сечение. Математический язык красоты» открывает серию «Мир математики» — уникальный проект, позволяющий читателю прикоснуться к тайнам этой удивительной науки.
В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.
Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.
Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.