Дилемма заключенного и доминантные стратегии. Теория игр - [34]

Шрифт
Интервал

Глава 5. Что наша жизнь? — Игра! Применения теории в реальном мире

Конкуренция лежит в основе науки... и всей жизни. <...> Соперничество и сотрудничество делают нас такими, какие мы есть.

Эрвин Неер, лауреат Нобелевской премии по медицине

Во всех задачах, представленных в прошлой главе, речь шла о соперничестве: выигрыш одного игрока всегда равнялся проигрышу другого, поэтому подобные игры называются играми с нулевой суммой. Это конфликтные ситуации, участники которых имеют прямо противоположные цели. Каждый игрок стремится получить максимальный выигрыш, что будет означать максимальный проигрыш соперника.

В этой главе мы рассмотрим немного другую тему. Целью игроков по-прежнему будет выигрыш, все так же будет существовать конфликтная ситуация, но это еще не все. С одной стороны, выигрыш одного не обязательно будет соответствовать проигрышу другого, и будут существовать стратегии, в которых выиграть могут оба игрока. С другой стороны, будут существовать ситуации, в которых сотрудничество будет выгодным для обеих сторон. Таким образом, в играх возникают коммуникация и взаимное доверие, но также и угрозы, цель которых — заставить соперника выполнить обещанное. В этих случаях речь идет о не полностью конфликтных ситуациях, и мы будем различать кооперативные и некооперативные стратегии.

Вспомним, что теория игр изучает принятие решений. В настоящей главе этому аспекту уделено особое внимание, так как во многих ситуациях, о которых мы расскажем далее, будет присутствовать выбор между соперничеством и сотрудничеством. Какие решения будут принимать игроки в этих условиях? Подобные ситуации порождают так называемые дилеммы, так как оба игрока могут соперничать или сотрудничать друг с другом, и неясно, какой вариант окажется более выгодным, поскольку все будет зависеть от решения, принятого оппонентом. В целом сотрудничество игроков принесет выгоду обоим, и результат будет наилучшим для каждого из игроков, в то время как соперничество приведет к печальным последствиям. Если бы существовали лишь две эти ситуации, то дилеммы бы не было. Однако если один из игроков пытается сотрудничать с другим, а тот решает соперничать, последний будет иметь преимущество, причем оно будет больше, чем при сотрудничестве. Таким образом, дилемма очевидна.

Ввиду сложности игр подобного типа, в этой главе математические аспекты неизбежно будут смешиваться с психологическими и даже моральными. Поэтому решения часто не будут строгими решениями с точки зрения математики, а будут представлять лишь возможные исходы, которые зависят от действий игроков. Несмотря на это, подобные игры вызывают больший интерес, чем описанные в прошлой главе, так как намного чаще встречаются в реальной жизни. В реальных конфликтных ситуациях соперничество и сотрудничество очень часто сочетаются.

Можно сказать, что все множество ситуаций, изучаемых в теории игр, можно разделить на две полярные группы: игры с нулевой суммой, основанные на чистом соперничестве, и игры, основанные на чистом сотрудничестве. И те и другие легко решить, по крайней мере в теории. Игры, основанные на чистом соперничестве, рассматривались в прошлой главе. Аналогично можно анализировать ситуации, основанные на чистом сотрудничестве: действия пилота раллийного автомобиля и его штурмана, действия партнеров в танце, действия пилота самолета и диспетчера — это всё примеры ситуаций, где оба игрока имеют одну цель, и решение состоит в том, чтобы объединить усилия (эффективно координировать ходы).

Прочие игры для двух лиц, о которых рассказывается в этой главе, находятся между этими двумя крайностями. Такие игры сложнее, поскольку интересы игроков частично противоположны, а частично совпадают, хотя на первый взгляд кажется, что это не так. Представим, например, продавца квартиры и возможного покупателя. Оба заинтересованы в заключении сделки (в сотрудничестве), но не могут сойтись в цене (конфликт). Можно также рассмотреть пример слияния двух компаний или противостояние двух стран, которые ведут войну. Во всех подобных случаях большинство стратегий подразумевают конфликт, но есть возможность прийти к соглашению или подписать пакт, который частично устроит обе стороны: можно заключить перемирие или соглашение о неиспользовании ядерного оружия.


РАЗВИТИЕ ТЕОРИИ ИГР

В 1944 году была опубликована работа фон Неймана и Моргенштерна «Теория игр и экономическое поведение», в которой излагался алгоритм поиска оптимальных решений в играх с нулевой суммой для двух лиц. Именно это событие считается отправной точкой теории игр. Основным предметом исследований новой теории стали кооперативные игры и анализ оптимальных стратегий в случаях, когда оппоненты могут прийти к соглашению относительно выбранных стратегий.

В 50-е годы XX века в теории игр произошел заметный прорыв. Появились первые исследования дилеммы заключенного, Джон Нэш определил понятие оптимальной стратегии для игр со множеством игроков, когда оптимальную стратегию нельзя определить заранее (подобная ситуация известна как равновесие Нэша). Этот алгоритм применим для некооперативных игр, но может быть расширен и для кооперативных. В это же время теория игр впервые начала применяться в других областях помимо экономики, например, в философии и политологии. Позднее, уже в 1970-е годы, теория игр начала применяться в биологии в основном благодаря работам Джона Мейнарда Смита, который ввел понятие эволюционно стабильной стратегии.


Рекомендуем почитать
Физике становится тепло. Лорд Кельвин. Классическая термодинамика

Под именем лорда Кельвина вошел в историю британский ученый XIX века Уильям Томсон, один из создателей экспериментальной физики. Больше всего он запомнился своими работами по классической термодинамике, особенно касающимися введения в науку абсолютной температурной шкалы. Лорд Кельвин сделал вклад в развитие таких областей, как астрофизика, механика жидкостей и инженерное дело, он участвовал в прокладывании первого подводного телеграфного кабеля, связавшего Европу и Америку, а также в научных и философских дебатах об определении возраста Земли.


Знание-сила, 2008 № 06 (972)

Ежемесячный научно-популярный и научно-художественный журнал.


Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Золотое сечение. Математический язык красоты

Можно ли выразить красоту с помощью формул и уравнений? Существует ли в мире единый стандарт прекрасного? Возможно ли измерить гармонию с помощью циркуля и линейки? Математика дает на все эти вопросы утвердительный ответ. Золотое сечение — ключ к пониманию секретов совершенства в природе и искусстве. Именно соблюдение «божественной пропорции» помогает художникам достигать эстетического идеала. Книга «Золотое сечение. Математический язык красоты» открывает серию «Мир математики» — уникальный проект, позволяющий читателю прикоснуться к тайнам этой удивительной науки.


Том 20. Творчество  в  математике. По каким правилам ведутся игры разума

В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.


Том 16. Обман чувств. Наука о перспективе

Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.


Секреты числа Пи. Почему неразрешима задача о квадратуре круга

Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.