Дилемма заключенного и доминантные стратегии. Теория игр - [28]
В начале XX века начала складываться теоретическая основа современной теории игр, окончательно оформившейся в середине столетия. Авторство первой теоремы принадлежит логику Эрнсту Цермело (1871-1956). Он сформулировал и доказал ее в 1912 году. Эта теорема подтверждает, что любая конечная игра с полной информацией (например, шашки или шахматы) имеет оптимальное решение в чистых стратегиях, то есть в отсутствие элемента неопределенности. Эта теорема не описывает, как можно найти подобные стратегии.
Примерно в 1920 году великий математик Эмиль Борель заинтересовался бурно развивающейся теорией и представил идею о смешанной стратегии (в которой фигурирует элемент случайности). Вскоре над этой темой начал работать Джон фон Нейман, и в 1928 году он сформулировал и доказал теорему о минимаксе. Очень скоро эта теорема стала ключевым элементом в дальнейшем развитии теории игр. Теорема фон Неймана гласит, что в конечной игре для двух игроков А и Б существует среднее значение, обозначающее возможный выигрыш игрока А и Б, если оба игрока действуют разумно, то есть пытаются увеличить выигрыш (или уменьшить проигрыш).
Французский математик Эмиль Борель, автор множества исследований по теории вероятностей.
Когда достигается равновесие?
Игры, которые мы проанализировали в прошлом разделе, являются простыми по нескольким причинам: в них участвуют два игрока, у каждого из них только два возможных хода (платежная матрица всегда имеет размеры 2X2). Кроме того, это игры с нулевой суммой, так как сумма выигрышей обоих игроков всегда равна нулю (проигрыш понимается как отрицательный выигрыш). В каждой партии нужно выбрать всего лишь один из двух возможных ходов. Каждый игрок может придерживаться оптимальной для себя стратегии в соответствии с правилами игры. В этом случае игра будет определена и результат будет равен цене игры (как в первом примере предыдущего раздела). Мы увидели, что этот результат является решением игры, если речь идет об игре с седловой точкой, то есть если один из элементов матрицы является одновременно максиминным (максимальным значением среди минимальных в каждой строке) и минимаксным (минимальным значением среди максимумов в каждом столбце). Если седловая точка отсутствует, мы не можем вести речь о чистых стратегиях, и следует применять смешанные стратегии, в которых используются случайные события и которые нужно сохранять в тайне от соперника. В случаях, когда платежная матрица симметрична, стратегией является полностью случайный выбор (как было показано в примере 2). В ином случае даже при использовании случайной стратегии выбор хода должен производиться в соответствии с определенным соотношением (что показано в примере 3).
Джон фон Нейман, известный по работам во множестве областей, является одним из наиболее выдающихся математиков XX века. Он начал научную деятельность в родном Будапеште, где изучал математику. Затем он переехал в Берлин, чтобы заниматься физикой, а позже в Цюрих, где изучал химию. С 1930 года он жил и работал в США. В Гёттингене под руководством Гильберта фон Нейман занимался теоретическими вопросами чистой математики, а также совместно с Гейзенбергом работал над началами квантовой теории. Он внес существенный вклад во многие сферы науки, в частности в теорию множеств, функциональный анализ, логику, теорию вероятностей, прикладную математику в экономике, квантовую физику и метеорологию.
Его интересы выходили за рамки чистой и прикладной математики и охватывали также столь различные области, как атомная физика, проектирование компьютеров, когнитивная психология и экономика. Одно из важнейших его достижений, относящееся к прикладной математике в экономике, — создание теории игр, которую он сформулировал в книге «Теория игр и экономическое поведение»», опубликованной совместно с экономистом Оскаром Моргенштерном в Принстоне в 1944 году. Этот труд считается фундаментальным в теории игр. Он ознаменовал создание теории игр, которая уже через несколько лет, начиная с 1950-х годов, стала находить применение в анализе множества реальных ситуаций.
Джон фон Нейман (справа) и Роберт Оппенгеймер, руководитель программы по созданию первой атомной бомбы, на этой фотографии 1952 года изображены рядом с самым быстрым и точным компьютером того времени.
Абстрактная игра с чистыми стратегиями
Проанализируем более подробно игры первого типа и посмотрим, что происходит при расширении платежной матрицы, то есть в случаях, когда для каждого игрока имеется больше двух возможных ходов.
Представим следующую игру для двух игроков: игрок А выбирает строку (F1, F2, F3), его соперник — столбец (Cl, С2, СЗ) из следующей платежной матрицы, при этом ни один из игроков не знает о выборе оппонента. Выбор игроков определит элемент матрицы (он находится на пересечении выбранных строки и столбца), который укажет, сколько евро должен заплатить второй игрок первому. Как должен действовать каждый игрок, чтобы увеличить свой выигрыш или уменьшить проигрыш?
Игрок А анализирует минимальные выигрыши в зависимости от совершенных ходов. Если он выберет F1, минимальный выигрыш равен -2, 2 для строки F2 и - 1 для строки F3. Наибольший из минимальных выигрышей (максиминное значение) равен 2. Если игра является определенной, нужно выбирать строку F2. Аналогично игрок Б анализирует наибольшие проигрыши в зависимости от совершенных ходов. Если он выберет С1, максимальный проигрыш равен 6, 7 — для столбца С2 и 2 — для столбца СЗ. Наименьший из максимальных проигрышей (минимаксное значение) равен 2. Если игра является определенной, нужно выбирать столбец СЗ.
Под именем лорда Кельвина вошел в историю британский ученый XIX века Уильям Томсон, один из создателей экспериментальной физики. Больше всего он запомнился своими работами по классической термодинамике, особенно касающимися введения в науку абсолютной температурной шкалы. Лорд Кельвин сделал вклад в развитие таких областей, как астрофизика, механика жидкостей и инженерное дело, он участвовал в прокладывании первого подводного телеграфного кабеля, связавшего Европу и Америку, а также в научных и философских дебатах об определении возраста Земли.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Можно ли выразить красоту с помощью формул и уравнений? Существует ли в мире единый стандарт прекрасного? Возможно ли измерить гармонию с помощью циркуля и линейки? Математика дает на все эти вопросы утвердительный ответ. Золотое сечение — ключ к пониманию секретов совершенства в природе и искусстве. Именно соблюдение «божественной пропорции» помогает художникам достигать эстетического идеала. Книга «Золотое сечение. Математический язык красоты» открывает серию «Мир математики» — уникальный проект, позволяющий читателю прикоснуться к тайнам этой удивительной науки.
В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.
Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.
Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.