Девятый знак - [33]

Шрифт
Интервал

Другой химик — Мейли — доказал, что время высушивания можно значительно сократить, если сосуды, в которых вещества запаяны в контакте с пятиокисью фосфора, хранить при высокой температуре. Это была хорошая мысль, потому что известно, что с повышением температур скорость химических реакций значительно ускоряется.

Таковы были два ручейка работ по сверхчистым веществам, которые мне удалось отыскать в море химической литературы того времени: Смите и Мейли. Эти ручейки пожурчали некоторое время и исчезли, оставив каждый по три-четыре статьи. Столь длительные эксперименты, видимо, надоели даже энтузиастам.

Наступила некоторая пауза, и в 1924 году, наконец, снова появилась статья γίο сверхчистым! Тот же Смите. Интересно, что там? Поистине «эффект высушивания» имеет какое-то свойство вызывать у ученых лирическое настроение. Передо мной дневник. Да, да, дневник в химическом журнале. С числами, днями недели и даже часами. Дневник с выражением эмоций автора по поводу проводимых опытов, его горести и радости.

Статья посвящена решению следующего вопроса: повышается ли температура кипения высушиваемых жидкостей внезапно, скачком, или постепенно — по мере удаления из нее влаги?

Был взят тщательно очищенный бензол. Описание процедуры очистки даже на скупом и точном языке химиков занимает почти две страницы, и мы его опустим. В начале эксперимента бензол, как и все остальные «бензолы» на земном шаре, имел температуру кипения 80°. 2 июня 1923 года жидкость была запаяна в специальный прибор, в котором его можно было перегонять из одного сосуда в другой, без контакта с воздухом, и где он находился все время вместе с пятиокисью фосфора.

25 августа бензол уже имел температуру кипения 81,5°. 23 февраля 1924 года — почти через девять месяцев после начала высушивания — бензол кипел при температуре 87°. Все шло как нельзя лучше. Но в этот день экспериментатора постигло несчастье. На колбу случайно упала курительная трубка. И хотя это была не громадная шкиперская трубка, которыми в кабаках Амстердама, случалось, проламывали друг другу головы подгулявшие моряки, а скромная вересковая трубочка ученого, все равно колба с бензолом дала небольшую трещинку. Трещинка была еле заметной, и к тому же ее почти тотчас же запаяли, но и этих нескольких минут оказалось достаточно, чтобы в колбу проникло ничтожное количество воздуха, содержавшего влагу. Опыт был испорчен: термометр снова показывал 80°.

Однако опыт продолжался. Через месяц после злополучного дня бензол кипел при температуре на полтора градуса выше. Еще через месяц температура кипения поднялась на три градуса по сравнению с первоначальной величиной, и, наконец, через год весь бензол перегонялся в интервале 86,6–87,7°. После этого опыт прекратили, хотя, продолжая дальше высушивать бензол, можно было довести его температуру кипения до той величины, которой достиг Бейкер, — до 106°, а быть может, и больше.

Надо не забывать, что Бейкера и его немногочисленных последователей при проведении каждого эксперимента мучил один вопрос: в чем дело, почему ничтожная, настолько ничтожная, что ее даже трудно выразить каким-либо определенным числом, примесь воды может оказывать такое разительное действие на свойства веществ?

Решению этого вопроса в той или иной степени был подчинен каждый эксперимент. Но шли годы, а решение вопроса было не ближе чем в 1913 году, когда впервые был открыт «эффект высушивания». Разве что только острота удивления притупилась немного.

Однако, когда исследователи поднялись еще на несколько ступенек, когда появилось еще несколько работ, забрезжил свет разгадки.

Еще несколько ступенек

Козьма Прутков в одном из своих афоризмов утверждает, что можно извлечь пользу даже из наблюдения расходящихся по воде кругов после падения камешка. Не знаю, какую именно пользу имел в виду этот вымышленный острослов. Однако могу подтвердить, что один из исследователей в аналогичной ситуации сумел сделать весьма интересные выводы. Он, правда, наблюдал, как выделяются пузырьки при кипении жидкости, но это немногим отличается от кругов, расходящихся по воде. Однако все дело в том, что жидкость эта — гексан (углеводород С>6Н>14) — была не простая. Это был гексан, подвергавшийся многолетней осушке.

Сверхсухой и сверхчистый гексан кипел при температуре 82°; «обычный» же гексан имеет температуру кипения 69°. Но не различие в температурах кипения является удивительным — это вещь уже известная. Удивительным был сам процесс кипения и перегонки.

Кипение и перегонка обычных жидкостей протекает очень просто и понятно: сначала температура всего объема жидкости медленно повышается и затем при какой-то определенной температуре, называемой температурой кипения, жидкость начинает перегоняться, причем перегонка идет строго при температуре кипения до тех пор, пока не исчезнет последняя капля вещества.

Со сверхчистыми же веществами все обстояло иначе. Взять хотя бы тот же гексан. Первые признаки кипения появились при 79°. Но, несмотря на то что жидкость кипела, температура ее продолжала медленно подниматься до тех пор, пока не достигла 82°. При этой температуре и перегонялась большая часть гексана.


Еще от автора Юрий Яковлевич Фиалков
Свет невидимого

Книга эта о радиоактивности. Той самой радиоактивности, которая была открыта на рубеже XIX и XX веков и которая во многом определила развитие не только физики, но и всех иных разделов естествознания.Без малого два десятилетия назад автор уже написал книгу о том, как явление радиоактивности послужило химии и геологии, медицине и археологии, биологии и космогонии («Ядро — выстрел!», издательство «Детская литература», 1966 г.). Но события в науке в наше время развиваются стремительно. Вот почему автору свою прежнюю книгу пришлось существенно переработать и дать ей другое название.


Как там у вас, на Бета-Лире?

Книга о проблемах космохимии, о современном уровне знаний в этой науке и ее перспективах.


На байдарке

Данная книга уже много лет, как стала классикой у байдарочников, причем люди, далекие от водного туризма ее тоже читают с удовольствием.


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.