Девятый знак - [22]
Все это и явилось причиной того, что не осталось буквально ни одной области химии плутония, куда бы не заглянул пытливый и острый взгляд химика-исследователя.
Хотя сам факт получения искусственных элементов сам по себе являлся поразительным, все-таки когда были изучены свойства первых заурановых элементов, то результаты оказались в высшей степени неожиданными. Выяснилось, что все эти элементы очень похожи по своим химическим свойствам. Так, все они в водных растворах могут давать соли с валентностью металла +3.
С другой стороны, многие заурановые элементы во многом напоминают уран. Пришлось бы очень долго перечислять однообразные факты чрезвычайной схожести этих элементов. Но здесь читатель может поверить автору на слово.
Вопрос здесь может быть другой: что же в этой схожести могло удивить химиков? Похожи так похожи. Однако утверждение еще не ответ на вопрос.
Пусть читатель закроет рукой или листком бумаги группу элементов на Периодической системе, которая обозначена как семейство актиноидов (почему так назвали семейство заурановых элементов, мы поясним чуть позже). Теперь таблица Менделеева выглядит точно так, как в конце 40-х годов, когда об искусственных заурановых элементах ничего известно не было. Представим себе химика того времени, пользующегося этой таблицей. Что мог сказать ученый о свойствах еще не существовавшего тогда элемента 93? Он мог бы рассуждать приблизительно так: «Если элемент 93 будет открыт или получен искусственно, то его квартира — клетка 93 — окажется в седьмой группе Периодической системы, под элементом рением. Значит, по свойствам 93-й должен походить на рений, как рений, в свою очередь, походит на технеций и марганец».
С такой же уверенностью этот химик мог предсказать, что 94-й элемент будет похож на осмий, потому что именно под осмием должна была находиться незаселенная в те годы еще квартира № 94 в доме «Группа № 8» по улице «Периодической системы».
Однако ничего подобного не оказалось. Заурановые элементы ничуть не походили на своих предполагаемых аналогов, зато были похожи друг на друга если не как близнецы, то как родные братья, наверное. Оказалось, что эти элементы и являются родными братьями не только по рождению, а так сказать, и по духовному или, вернее, химическому единству.
Читатель, наверное, уже обращал внимание на то, что в Периодической системе элементов после элемента с порядковым номером 56 следует клетка, в которой стоят номера 57–71. 15 элементов в одной клетке! Или, говоря вернее, 15 клеток в одной. В чем тут дело? Какова причина этого, на первый взгляд, странного явления?
Известно, что внешняя электронная оболочка атома каждого элемента Периодической системы отличается от внешней электронной оболочки атомов соседних элементов. Так, например, литий имеет один электрон на внешней электронной оболочке, бериллий — два, бор — три и т. д. Многим также должно быть известно и то, что именно это число электронов на внешней электронной оболочке определяет химические свойства элемента. Вот элемент лантан — первый член выделенного нами семейства, которое носит название лантаноидов, то есть лантаноподобных. У лантана на внешней электронной оболочке имеется три электрона. Поэтому лантан и является трехвалентным. Мы должны были бы предполагать, что следующий за лантаном элемент — церий — должен иметь на внешней электронной оболочке четыре электрона. Однако на внешней электронной оболочке церия, как и у лантана, три электрона. Куда же девается лишний электрон? Оказывается, он заполняет одну из внутренних электронных оболочек. То же самое наблюдается и у следующих лантаноидов. Все они: и празеодим, и неодим, и прометий, и другие, все — по элементу 71 — имеют во внешнем электронном слое три электрона, а заполняются у них внутренние электронные оболочки. Вот почему эти 15 элементов чрезвычайно похожи друг на друга по своим химическим да и физическим свойствам.
Точно такая же картина наблюдается в случае элементов, следующих в Периодической системе за актинием. У тория — соседа актиния — тоже заполняется не внешняя электронная оболочка, а одна из внутренних. То же самое у элементов протактиния, урана и всех полученных до настоящего времени заурановых элементов. Поэтому заурановые элементы вместе с ураном, протактинием и актинием, подобно лантаноидам, выделяются в отдельное семейство актиноидов. Таким образом, в Периодической системе появилась еще одна «многокомнатная квартира»— клетка, которая вмещает в себя номера с 89-го по 103-й.
Сейчас уже с полной уверенностью можно предсказать, что семейство актиноидов будет завершаться 103-м элементом. И только 104-й элемент будет стоять в IV группе Периодической системы.
Можно даже заключить, что электронная оболочка этого еще не полученного элемента будет подобна электронной оболочке гафния. Впрочем, для такого заключения не надо быть особенным провидцем — для этого достаточно иметь перед глазами Периодическую систему элементов.
В лабораториях природы
Когда были изучены свойства первых из полученных заурановых элементов, стало понятным, почему оказались безрезультатными поиски этих элементов в природе. Периоды полураспада даже самых долгоживущих из них столь невелики в сравнении с временем существования нашей планеты, что за это время они успели полностью распасться.
Книга эта о радиоактивности. Той самой радиоактивности, которая была открыта на рубеже XIX и XX веков и которая во многом определила развитие не только физики, но и всех иных разделов естествознания.Без малого два десятилетия назад автор уже написал книгу о том, как явление радиоактивности послужило химии и геологии, медицине и археологии, биологии и космогонии («Ядро — выстрел!», издательство «Детская литература», 1966 г.). Но события в науке в наше время развиваются стремительно. Вот почему автору свою прежнюю книгу пришлось существенно переработать и дать ей другое название.
Данная книга уже много лет, как стала классикой у байдарочников, причем люди, далекие от водного туризма ее тоже читают с удовольствием.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.