Девять цветов радуги - [82]

Шрифт
Интервал

Может ли вообще электроника решить подобную задачу?

Безусловно, и в этом ей помогает фотоэффект. Об одном из волшебных приборов, созданных электроникой, позволяющем человеку непосредственно наблюдать невидимое, будет сейчас рассказано. Называется этот прибор электронно-оптическим преобразователем.

Схематический чертеж простейшего преобразователя приведен ниже.

Стакан Холста — первый тип электронно-оптического преобразователя.


Из него видно, что преобразователь представляет собой стеклянную колбу или баллон, похожий на стакан, но не простой, а с толстыми полыми стенками и двойным дном.

Рассмотрите чертеж внимательно, и вы увидите, что на внутренней поверхности дна большого стакана располагается фотокатод, такой же, как у фотоумножителя. Вы заметите так же, что на внутренней поверхности дна малого стакана нанесен слой люминофора — особого порошка, способного светиться под воздействием электронной бомбардировки. Этот люминофор образует экран, по своим свойствам совершенно схожий с экраном кинескопов для телевизоров. Заметьте, что к экрану положительным полюсом подключен источник высокого напряжения и, таким образом, он одновременно является и анодом.

На том же чертеже вы видите схематическое изображение объекта, сфокусированное на фотокатоде.

В соответствии с распределением освещенности на самом объекте различные участки фотокатода будут, как и на любой фотопластинке, освещены по-разному. На основании закона Столетова каждый из участков фотокатода будет в единицу времени испускать пропорциональное количество электронов: слабо освещенные участки будут испускать их мало, сильно освещенные — много.

Под воздействием приложенного высокого напряжения электроны, ускоряясь, полетят к экрану. По каким же путям будут они перемещаться? Оказывается, и это чрезвычайно важно при данной конструкции преобразователя, каждый из электронов будет двигаться по прямой, перпендикулярной к точке фотокатода, из которой он вылетел. А это означает, что каждая точка фотокатода как бы соединена незримой трубочкой с соответствующей точкой экрана. И по этим «трубочкам» движутся, не смешиваясь между собой, электроны.

В таких условиях каждая точка экрана будет светиться с яркостью, пропорциональной количеству электронов, вылетевших из противоположной точки фотокатода. И, следовательно, на экране мы увидим ту же самую картину, которая проектируется линзой на фотокатод. Ее нарисуют на белом экране электроны. Качество изображения в современных электронно-оптических преобразователях, гораздо более сложных по своей конструкции, чем описанный здесь, очень хорошее. Оно ненамного хуже, чем у фотографий, получаемых с малоформатного негатива. Правда, к краям изображение иногда заметно ухудшается.

Возможно, некоторые читатели усомнятся в пользе такого преобразования— ведь оно уже давно доступно фотографии. Действительно, фотография может получать изображение в инфракрасных и ультрафиолетовых лучах. Но сколько приходится терять времени, прежде чем снимок будет готов и станет доступным для просмотра! А электронно-оптический преобразователь показывает человеку то, что происходит в момент наблюдения, и тем самым позволяет вести активное наблюдение. А это означает, что при необходимости человек может вмешиваться в происходящее и контролировать результаты своего вмешательства.

Создатели электронно-оптического преобразователя ставили перед собой именно такую задачу — вооружить глаз устройством, позволяющим вести активное наблюдение в невидимых лучах спектра. При этом прежде всего имели в виду инфракрасные лучи, так как они способны проникать сквозь дымку, а многие объекты, особенно военного значения, сами интенсивно испускают такие лучи и поэтому могут быть демаскированы при наблюдении в инфракрасный преобразователь.

Однако, по мере того как преобразователи совершенствовались, выяснились их новые замечательные свойства. Главнейшее из них то, что яркость изображения на экране может превышать яркость самого объекта во много десятков раз. То есть преобразователи изображения одновременно явились и усилителями яркости. Особенно большое усиление можно получить, если сделать преобразователь каскадным. Принцип каскадности очень прост и состоит в том, что усиленное по яркости изображение с экрана преобразователя вновь проектируется на фотокатод второго преобразователя и еще раз усиливается. Изображение, видимое на экране второго преобразователя, будет, таким образом, во много раз ярче уже усиленного по яркости изображения, получаемого на экране первого преобразователя. Такое каскадное соединение преобразователей позволяет получать даже тысячекратное усиление яркости.

Схематическое изображение современного двухкаскадного электронно-оптического преобразователя.


А это означает, что электронно-оптический преобразователь позволяет видеть (и хорошо видеть) в такой кромешной тьме, в которой глаза человека, кошки, барсука и даже совы совершенно беспомощны. Правда, качество изображения в каскадном преобразователе несколько ухудшается — падает его четкость, но не очень значительно. И, если учесть, что он является пока единственным в мире прибором, превосходящим во много раз по чувствительности глаз человека, такое снижение четкости можно не считать решающим недостатком.


Еще от автора Александр Израилевич Штейнгауз
Завод без людей

Сейчас нет ни одной области производственной деятельности человека — будь то промышленность, транспорт, научные исследования или сельское хозяйство, где бы широким фронтом не внедрялась автоматика. Книга А. Штейнгауза «Завод без людей», выходящая в серии «Наука и техника шестой пятилетки», и посвящена этой важнейшей проблеме всего современного производства. Она рассказывает об огромном труде многих поколений людей, каждое из которых внесло свой вклад в создание и совершенствование механических помощников человека: от первых автоматических устройств древних до последнего достижения инженерного гения человека — полностью автоматических заводов.


Рекомендуем почитать
Как собрать кубик Рубика 3х3х3. Простой метод для начинающих

В этой книге вы найдете один из способов для начинающих, как можно быстро и очень легко собрать кубик Рубика. По моему опыту, множество людей способны собрать кубик с помощью метода, описанного в этой книге, за врем, менее 2 минут из любого его состояния запутанности. В рамках этой книги я постараюсь научить вас технике сборки кубика Рубика, которую я сам освоил еще в 1988 году, когда был ребенком. Этот метод довольно прост и позволяет научиться собирать кубик Рубика за 1,5 – 2 минуты без лишних тренировок, но с некоторым необходимым усердием.



Толкование коносаментов в международной торговле: учебное пособие для студентов бакалавриата, магистратуры и специалитета

Данное учебное пособие предназначено для студентов всех форм обучения юридических и экономических факультетов вузов при изучении таких учебных дисциплин, как «Транспортное право», «Правовое регулирование международных перевозок», «Международная логистика».Работа состоит из двух частей и представляет собой комплексное учебное пособие, обеспечивающую теоретическую и практическую подготовку на английском языке в сфере международного частного транспортного права и документарных операций международного коммерческого оборота.


Новый Завет в изложении для детей

Эта книга является пособием для первоначального изучения Священного Писания, а именно Четвероевангелия. Прочитав ее, вы познакомитесь с главными событиями земной жизни Иисуса Христа, от Его Рождества до Воскресения из мертвых и Вознесения на Небо. Услышите Его проповедь и учение о Царствии Божием. Узнаете о совершенных Им чудесах – исцелении больных, насыщении голодных, хождении по водам, укрощении бури, изгнании бесов, воскрешении мертвых.


Веселые задачи. Две сотни головоломок

«Веселые задачи» собраны, а во многом и придуманы основоположником жанра «Занимательная наука» Я. И. Перельманом. На первый взгляд несложные, но каверзные и от этого невероятно увлекательные задачи развивают умение логически мыслить, самостоятельно рассуждать и делать нестандартные выводы.


Игры с Чипом

Цикл детских образовательных статей из журнала "Пионер" за 1986-1987 года.В сказочно-игровой форме для дошкольников и младших школьников даются базовые понятия информатики.Предисловие для ребят и родителейМы приближаемся к новому веку, в котором люди самых разных профессий будут работать на компьютерах — электронно-вычислительных машинах. Как человек должен излагать свои мысли, чтобы его понял компьютер? А как компьютер будет понимать человека? Эти и многие другие интересные задачи ставит информатика. Их придется решать тем, кто сейчас учится в школе, и тем, кто только ходит в детский сад, и тем, кто еще не родился на свет.


Тарантул

Третья книга трилогии «Тарантул».Осенью 1943 года началось общее наступление Красной Армии на всем протяжении советско-германского фронта. Фашисты терпели поражение за поражением и чувствовали, что Ленинград окреп и готовится к решающему сражению. Информация о скором приезде в осажденный город опасного шпиона Тарантула потребовала от советской контрразведки разработки серьезной и рискованной операции, участниками которой стали ребята, знакомые читателям по первым двум повестям трилогии – «Зеленые цепочки» и «Тайная схватка».Для среднего школьного возраста.


Исторические повести

Книгу составили известные исторические повести о преобразовательной деятельности царя Петра Первого и о жизни великого русского полководца А. В. Суворова.


Зимний дуб

Молодая сельская учительница Анна Васильевна, возмущенная постоянными опозданиями ученика, решила поговорить с его родителями. Вместе с мальчиком она пошла самой короткой дорогой, через лес, да задержалась около зимнего дуба…Для среднего школьного возраста.


А зори здесь тихие… Повесть

Лирическая повесть о героизме советских девушек на фронте время Великой Отечественной воины. Художник Пинкисевич Петр Наумович.