Девять цветов радуги - [28]

Шрифт
Интервал

Теория относительности — великое завоевание человеческого ума, и всемирная слава не зря сопутствовала выдающемуся физику-мыслителю на протяжении всей его жизни. Но Эйнштейн создал не только теорию относительности. В том же 1905 году он, опираясь на закон Столетова и на известную нам работу Планка, объяснил явление фотоэффекта и тем самым положил начало новому пониманию процессов взаимодействия света с веществом. Если бы Эйнштейн за всю свою жизнь не дал бы науке ничего, кроме формулы фотоэффекта и ее толкования, то и этого было бы достаточно, чтобы его заслуги перед наукой не уступали заслугам многих ученых, навсегда оставивших по себе память в истории физики.

Для того чтобы отличать кванты световой энергии от прочих квантов, их назвали фотонами. Энергия фотонов (или величина квантов излучаемой энергии) меняется в зависимости от длины волны излучаемого света. В то же время она строго неизменна для данной длины волны. Мы помним также, что исследования фотоэффекта показали, что скорость выбитого из фотокатода электрона зависит только от длины волны падающего света, но не зависит от его интенсивности. Этот факт полностью противоречил волновой теории и, в частности, математическому определению энергии света, вытекающему из этой теории.

Эйнштейн, объясняя явление фотоэффекта, отказался от волновой теории — он понимал, что никакие искусственные построения не смогут спасти ее. Он пошел по другому пути, который, возможно, подсказала удивительная общность между фактами излучения энергии черным телом и фактами, обнаруженными при исследовании фотоэффекта.

Вот эти уже известные нам факты:

1. Энергия (или скорость) электрона, выбитого светом из фотокатода, при освещении монохроматическим светом неизменной длины волны всегда одна и та же. Чем короче длина волны падающего света, тем больше энергия (или скорость) электрона.

2. Энергия излученного фотона при неизменной длине волны всегда одна и та же. Энергия фотона тем выше, чем короче длина волны излучаемого света.

Вот выводы, к которым пришел Эйнштейн, проанализировав эти факты:

1. Энергия фотона, проникшего в вещество фотокатода, целиком и полностью отдается только одному из электронов, находящемуся в веществе фотокатода.

2. Повышение энергии электрона, выражающееся в повышении его скорости, приводит при достаточной величине энергии фотона к вылету электрона из фотокатода. Чем выше энергия фотона, тем больше энергия (скорость) вылетевшего электрона. Последнее на языке волновой теории выражается так: чем короче волна падающего света, тем выше энергия (скорость) выбитого из фотокатода электрона.

3. Чем выше интенсивность света, тем, следовательно, больше фотонов в единицу времени падает на фотокатод, тем больше выбивается из него электронов, то есть тем больше ток.

Именно эти выводы и положены в основу объяснения явления фотоэффекта. Они позволяют создать не только качественную, но и количественную теорию этого явления.

Однако это далеко не все. Определение светового кванта — фотона, данное Планком чисто математически, ничего не говорило о физической сущности фотона; оно описывало только его энергию. Но о том, как ведет себя фотон в пространстве, каким, хотя бы очень приближенно, следует представлять его, никто до Эйнштейна не говорил. Пояснить понятие фотона Эйнштейну помогла созданная им теория относительности.

Один из важных выводов этой теории говорит, что фотон обладает массой. Правда, в отличие от обычных тел, фотон не имеет массы покоя. Его вообще нельзя мыслить неподвижным — он может перемещаться в пространстве только со скоростью света, ибо он и есть свет, вернее, частица его. Но не та ньютоновская корпускула, которая представлялась как некое мельчайшее зернышко, как некое абсолютно упругое тельце и которую вполне можно представить себе неподвижной в пространстве и неизменной во времени. Нет, фотон совсем не таков: он весь в движении, он не может существовать вне его.

И все же, несмотря на такие необычайные свойства фотона, многие признаки дали ученым право отнести его к разряду частиц и, следовательно, вновь пересмотреть свои воззрения на природу света.

В наши дни свет уже не считается волновым явлением в классическом смысле этого слова.

Как же быть в таком случае с волновыми представлениями? Неужели волновая теория неверна и от нее следует отказаться? К счастью, нет. Не только не следует, но и невозможно перечеркнуть волновую теорию. Ибо она по-прежнему верно отражает и объясняет огромное количество фактов, широкое многообразие проявлений света. Но не все. Теперь мы знаем, что волновая теория хоть и верна, но не всеобъемлюща. Иными словами, она не является универсальной теорией, так как не в состоянии объяснить, например, такое явление, как фотоэффект. Точно так же не была универсальной и теория света, в создании которой участвовал Эйнштейн. Новая корпускулярная, или квантовая, теория, дав объяснение фотоэффекта и других явлений и даже предсказав новые важные факты, столкнулась с непреодолимыми трудностями при попытке объяснить с помощью новых понятий явления интерференции и дифракции.


Еще от автора Александр Израилевич Штейнгауз
Завод без людей

Сейчас нет ни одной области производственной деятельности человека — будь то промышленность, транспорт, научные исследования или сельское хозяйство, где бы широким фронтом не внедрялась автоматика. Книга А. Штейнгауза «Завод без людей», выходящая в серии «Наука и техника шестой пятилетки», и посвящена этой важнейшей проблеме всего современного производства. Она рассказывает об огромном труде многих поколений людей, каждое из которых внесло свой вклад в создание и совершенствование механических помощников человека: от первых автоматических устройств древних до последнего достижения инженерного гения человека — полностью автоматических заводов.


Рекомендуем почитать
Как собрать кубик Рубика 3х3х3. Простой метод для начинающих

В этой книге вы найдете один из способов для начинающих, как можно быстро и очень легко собрать кубик Рубика. По моему опыту, множество людей способны собрать кубик с помощью метода, описанного в этой книге, за врем, менее 2 минут из любого его состояния запутанности. В рамках этой книги я постараюсь научить вас технике сборки кубика Рубика, которую я сам освоил еще в 1988 году, когда был ребенком. Этот метод довольно прост и позволяет научиться собирать кубик Рубика за 1,5 – 2 минуты без лишних тренировок, но с некоторым необходимым усердием.



Толкование коносаментов в международной торговле: учебное пособие для студентов бакалавриата, магистратуры и специалитета

Данное учебное пособие предназначено для студентов всех форм обучения юридических и экономических факультетов вузов при изучении таких учебных дисциплин, как «Транспортное право», «Правовое регулирование международных перевозок», «Международная логистика».Работа состоит из двух частей и представляет собой комплексное учебное пособие, обеспечивающую теоретическую и практическую подготовку на английском языке в сфере международного частного транспортного права и документарных операций международного коммерческого оборота.


Новый Завет в изложении для детей

Эта книга является пособием для первоначального изучения Священного Писания, а именно Четвероевангелия. Прочитав ее, вы познакомитесь с главными событиями земной жизни Иисуса Христа, от Его Рождества до Воскресения из мертвых и Вознесения на Небо. Услышите Его проповедь и учение о Царствии Божием. Узнаете о совершенных Им чудесах – исцелении больных, насыщении голодных, хождении по водам, укрощении бури, изгнании бесов, воскрешении мертвых.


Веселые задачи. Две сотни головоломок

«Веселые задачи» собраны, а во многом и придуманы основоположником жанра «Занимательная наука» Я. И. Перельманом. На первый взгляд несложные, но каверзные и от этого невероятно увлекательные задачи развивают умение логически мыслить, самостоятельно рассуждать и делать нестандартные выводы.


Игры с Чипом

Цикл детских образовательных статей из журнала "Пионер" за 1986-1987 года.В сказочно-игровой форме для дошкольников и младших школьников даются базовые понятия информатики.Предисловие для ребят и родителейМы приближаемся к новому веку, в котором люди самых разных профессий будут работать на компьютерах — электронно-вычислительных машинах. Как человек должен излагать свои мысли, чтобы его понял компьютер? А как компьютер будет понимать человека? Эти и многие другие интересные задачи ставит информатика. Их придется решать тем, кто сейчас учится в школе, и тем, кто только ходит в детский сад, и тем, кто еще не родился на свет.


Тарантул

Третья книга трилогии «Тарантул».Осенью 1943 года началось общее наступление Красной Армии на всем протяжении советско-германского фронта. Фашисты терпели поражение за поражением и чувствовали, что Ленинград окреп и готовится к решающему сражению. Информация о скором приезде в осажденный город опасного шпиона Тарантула потребовала от советской контрразведки разработки серьезной и рискованной операции, участниками которой стали ребята, знакомые читателям по первым двум повестям трилогии – «Зеленые цепочки» и «Тайная схватка».Для среднего школьного возраста.


Исторические повести

Книгу составили известные исторические повести о преобразовательной деятельности царя Петра Первого и о жизни великого русского полководца А. В. Суворова.


Зимний дуб

Молодая сельская учительница Анна Васильевна, возмущенная постоянными опозданиями ученика, решила поговорить с его родителями. Вместе с мальчиком она пошла самой короткой дорогой, через лес, да задержалась около зимнего дуба…Для среднего школьного возраста.


А зори здесь тихие… Повесть

Лирическая повесть о героизме советских девушек на фронте время Великой Отечественной воины. Художник Пинкисевич Петр Наумович.