Десять великих идей науки. Как устроен наш мир. - [56]
Рис. 4.10. Термодинамический анализ работы парового двигателя (или теплового двигателя). Энергия покидает горячий источник в виде тепла, а поэтому уменьшает его энтропию. Часть этой энергии превращается в работу, которая не влияет на энтропию. Остаток энергии попадает в холодный сток, производя таким образом много энтропии. При условии, что температура холодного стока ниже, чем температура горячего источника, общая энтропия будет возрастать, даже если энергия, растраченная в виде тепла, меньше энергии, полученной из горячего источника. Разница между полученной и потраченной энергией может быть извлечена в виде работы.
Термодинамический анализ работы парового двигателя (или теплового двигателя). Энергия покидает горячий источник в виде тепла, а поэтому уменьшает его энтропию. Часть этой энергии превращается в работу, которая не влияет на энтропию. Остаток энергии попадает в холодный сток, производя таким образом много энтропии. При условии, что температура холодного стока ниже, чем температура горячего источника, общая энтропия будет возрастать, даже если энергия, растраченная в виде тепла, меньше энергии, полученной из горячего источника. Разница между полученной и потраченной энергией может быть извлечена в виде работы.
Теперь главное. Коль скоро наш двигатель не произвел работы, мы получили бы тот же результат, просто приведя горячий источник в прямое соприкосновение с холодным стоком. Однако перенос энергии из горячего источника остается спонтанным, даже если мы превращаем часть ее — но не всю энергию — в работу, а остаток переводим в холодный сток. Это, конечно, тот случай, когда отъем энергии в виде тепла у горячего источника приводит, как и прежде, к уменьшению его энтропии. Однако мы можем получить компенсирующее возрастание энтропии, отправляя в холодный резервуар меньшее количество тепла. Например, если температура холодного стока равна половине температуры горячего источника (в абсолютной шкале температур), то мы можем получить компенсирующее возрастание энтропии, позволив лишь половине извлеченной энергии уйти в холодный сток и оставив вторую половину себе, чтобы использовать ее для получения полезной работы. Двигатель работает спонтанно, то есть это полезный и жизнеспособный прибор, поскольку общее возрастание энтропии имеет место, даже если мы используем часть извлеченной энергии в виде работы.
Теперь можно понять, что холодный сток является существенно важным. Только если холодный сток есть в наличии, и часть энергии попадает в него, имеется какая-то надежда, что энтропия в целом возрастет. Отдача энергии горячим источником соответствует убыванию энтропии. Перенос энергии вовне в виде работы оставляет энтропию неизменной, поэтому на данной стадии всей истории в целом имеет место убывание энтропии. Для того чтобы двигатель работал спонтанно (а двигатели, которые не действуют спонтанно, то есть приводимые в движение извне, хуже чем бесполезны), существенно важно производить где-то некоторую энтропию, чтобы гарантировать, что в целом энтропия будет возрастать. В этом роль холодного стока: он действует, как тихая библиотека, являясь местом большого возрастания энтропии, даже если в него сбрасывается малое количество энергии. При этом важно заметить, что «потери», как и сосуд для этих потерь, необходимы, чтобы двигатель мог быть жизнеспособным. Холодный источник поэтому является источником жизнеспособности двигателя, поскольку без него не могло бы быть никакого возрастания энтропии.
Паровой двигатель демонстрирует тот факт, что для получения работы — конструктивной силы — существенно важно, чтобы происходила также и диссипация энергии. Простое отбирание энергии из горячего источника не приводит к результату: чтобы заставить двигатель работать, мы должны сбросить некоторое количество тепла для подогрева холодного стока (который может быть просто окружающим пространством, а не обязательно частью конструкции двигателя). Где бы мы ни встретили конструкцию, мы обнаруживаем связанную с ней по крайней мере столь же большую деструкцию.
Давайте взглянем на некоторые изменения, происходящие в мире, и увидим, как, несмотря на то что они являются конструкциями, они вызываются к жизни происходящей где-то деструкцией. Сначала внешний мир. Любой акт строительства, например возведение стены, требует, чтобы была проделана работа по поднятию кирпичей на соответствующую высоту. Чтобы проделать эту работу, надо использовать двигатель (включая заправляемые едой мускульные двигатели живых тел), а чтобы двигатель был жизнеспособным, он должен порождать энтропию, рассеивая энергию в окружающую среду. Итак, двигатель подъемного устройства, тепловой двигатель некоторого рода, действует, рассеивая энергию в окружающее его пространство. Это верно даже для электрического подъемника, когда рассеяние энергии происходит в некотором удалении, на электростанции. Все искусственно созданные структуры мира, от гигантских пирамид до примитивных лачуг, были построены за счет рассеяния энергии.
Мы можем увидеть ближе способ, посредством которого происходит рассеяние энергии, рассмотрев химические реакции, используемые для поднятия температуры горячего источника. В этом обсуждении я сосредоточу внимание на привычном паровом двигателе. Хотя принцип действия двигателя внутреннего сгорания, в том, что касается рассматриваемых процессов, является тем же, технологически он реализуется более сложным путем, а я не хочу отвлекать вас деталями. Паровой двигатель является двигателем
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.