Десять великих идей науки. Как устроен наш мир. - [52]

Шрифт
Интервал

Изменение энтропии = энергия, полученная в виде тепла / температура, при которой произошла передача,

Так, если некоторая энергия поступает в тело в виде тепла при комнатной температуре, то имеет место возрастание энтропии как можно рассчитать по этой формуле (отметим, что в знаменателе используется температура по абсолютной шкале). Пока вы там сидите, читая это предложение, вы генерируете тепло, которое рассеивается в окружающем вас пространстве, и тем самым вы увеличиваете энтропию своего окружения.[17] Если то же количество энергии поступает в виде тепла в то же самое тело при более низкой температуре, изменение энтропии будет больше; если энергия покидает тело в виде тепла, то энергия, поступающая в виде тепла, отрицательна, поэтому отрицательно и изменение энтропии. То есть энтропия тела уменьшается, когда оно теряет энергию в виде тепла, как остывающая чашка кофе. Заметим, что изменение энтропии задается энергией, передаваемой как тепло, и никак не зависит от энергии, передаваемой как работа. Работа сама по себе не порождает и не уменьшает энтропию.

Прежде чем я подниму занавес и покажу вам, что такое энтропия на самом деле, давайте убедимся, что это понятие действительно объединяет законы, предложенные Кельвином и Клаузиусом. Действительно, Клаузиус предположил, что оба утверждения могут быть поселены под одной крышей с помощью утверждения, что энтропия никогда не убывает.[18] Рассмотрим первое утверждение Кельвина, эквивалентное другому, гласящему, что «ваш двигатель будет работать, только если вы потратите попусту некоторую энергию», выраженное в терминах изменений энтропии. Предположим, мы объявляем, что изобрели двигатель, который использует все тепло и не нуждается в холодном стоке. Клаузиус сказал бы следующее:

Вы отняли тепло от горячего источника, поэтому энтропия резервуара упала. Все это тепло превращено машиной в работу, так что энергия вышла в окружающую среду в виде работы. Но работа не меняет энтропии, поэтому конечным результатом является уменьшение энтропии горячего источника. В соответствии с моим утверждением энтропия никогда не убывает. Поэтому ваш двигатель не может работать, в точности, как утверждал Кельвин.

Теперь рассмотрим первоначальное утверждение Клаузиуса о том, что тепло не течет от холодного к горячему. Предположим, мы объявляем, что наблюдали тепло, текущее в неправильном направлении, например, обнаружили лед в стакане воды, поставленном в печь. Клаузиус сказал бы теперь следующее:

Энергия в виде тепла покинула холодный объект (воду в стакане), поэтому его энтропия упала. Поскольку его температура низка, а температура стоит в знаменателе моего выражения для изменения энтропии, это убывание энтропии велико. Та же энергия поступила в горячую область (внутренность печи), поэтому энтропия этой области возросла. Однако из-за высокой температуры печи это возрастание мало. Конечным результатом будет сумма малого возрастания и большого убывания, дающая в целом убывание энтропии. В соответствии с моим утверждением энтропия никогда не убывает, поэтому тепло не может спонтанно перетекать от холодного к горячему, в точности, как я утверждал прежде.

Мы видим, что Клаузиус, введя энтропию, продемонстрировал такую степень абстракции, которая точно накрыла два эмпирических закона, казавшиеся портретами двух разных сторон мира: формулировка Второго Начала термодинамики в терминах энтропии подобна кубу, который при одном повороте проецируется как квадрат, символизируя формулировку Кельвина, а при другом как шестиугольник, представляя формулировку Клаузиуса. Утверждение Клаузиуса, что энтропия никогда не убывает, является сжатым итогом опыта и более утонченной, более абстрактной формулировкой Второго Начала. Сам Клаузиус суммировал термодинамическое состояние мира в своей знаменитой паре утверждений, которые суммируют вместе Первое и Второе Начала термодинамики:

Der Energie der Welt ist konstant; die Entropy der Welt strebt einem Maximum zu.

To есть энергия мира постоянна, энтропия стремится к максимуму.

Когда Второе Начало было впервые выражено в терминах энтропии, оно встретило серьезную оппозицию, поскольку раздражало чувствительные точки века: то, что энергия Вселенной постоянна, принять было легко (поскольку энергия изначально понималась как божественный дар, который никакое количество человеческой суеты не могло ни увеличить, ни уменьшить), но как что-то, чего и так в изобилии, могло возрастать? Откуда оно пришло? Кто или что вливает энтропию во Вселенную, смазывая тем самым колеса спонтанных изменений? Дух этого закона был таким чуждым, что на поиск контрпримеров были затрачены значительные усилия. Однако без малейшего успеха. Нет ни одного исключения из Второго Начала, куда бы оно ни прилагалось. Его используют для предсказания спонтанного направления простых физических процессов, таких как охлаждение горячих объектов до температуры окружения (и исключение обратного процесса, как неестественного) и спонтанное расширение газов в доступный объем (и исключение обратного). Его также используют для предсказания того, в каком направлении пойдут химические реакции, например, чтобы судить, можно ли для восстановления руды использовать углерод (как в случае железа), или вместо него следует использовать электролиз (как для алюминия). Оно приложимо к таинственному хитросплетению биохимических реакций, которые создают тот комплекс свойств вещества, который мы называем жизнью. Нет явления, которого оно не могло бы коснуться, и случая, в котором оно ошибалось бы; оно теперь подобно несокрушимой скале универсальной и непреходящей ценности.


Рекомендуем почитать
Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.